Evaluación del tiempo de tromboplastina parcial, tiempo de trombina y tiempo de protrombina en plasma tratado con proteasa fibrinolítica

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25439

Palabras clave:

Trombosis; Fibrinolíticos; Coagulación; Plasma.

Resumen

Las proteasas fibrinolíticas son enzimas que degradan la fibrina, el principal componente de los coágulos sanguíneos. Así, el presente estudio tuvo como objetivo comprender la evaluación de aPTT, TT y TP en plasma tratado con una proteasa fibrinolítica producida por Mucor subtillissimus. Para evaluar el efecto anticoagulante, se utilizó la proteasa a diferentes concentraciones de 0,5-2,5 mg/ml. Las pruebas mostraron que la enzima promovió un tiempo prolongado significativo durante el tiempo de coagulación de PT con una concentración creciente. En el ensayo APTT, la proteasa fibrinolítica prácticamente no prolongó el tiempo de coagulación, incluso con el aumento de la concentración de enzima. En TT, se encontró que en todo momento de contacto con trombina, ya sea de 5 a 30 minutos, no hubo interferencia en la acción de trombina o fibrinógeno en la formación de trombos. Como solo se alteró el tiempo de protrombina entre todos los estudiados, se sugiere que la proteasa fibrinolítica en estudio afecta la vía extrínseca de la coagulación. Así, fue posible observar que la serina proteasa promovió una prolongación significativa del tiempo de coagulación de PT a medida que aumentaba la concentración de enzima, pero la serina proteasa no provocó ningún tipo de cambio en TT y APTT.

Citas

Banerjee, S., Prasanna, R., Bagchi, S.N. (2013). Purification and Characterization of a Fibrino(geno)lytic Protease from Cultured Natural Isolate of a Cyanobacterium, Anabaena fertilissima. Journal of Applied Social Psychology, 25, 1111- 1122.

Byskov, K., Gall, S.M.L.E., Thiede, B., Camerer, E., Kanse, S.M. (2020). Protease activated receptors (PAR)‐1 and ‐2 mediate cellular effects of factor VII activating protease (FSAP). The Faseb Journal, 34 (1), 1079-1090.

Chandramohan, M., Yee, C.Y., Beatrice, P.H.K., Ponnaiah, P., Narendrakumar, G., Samrot, A.V. (2019). Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA02 isolated from poultry slaughter house soils. Biocatalysis and Agricultural Biotechnology, 22, 101371.

Chang, C.T., Wang, P.M., Hung, Y.F., Chung, Y.C. (2012). Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chemistry, 133 (4), 1611-1617.

Devaraj, Y., Rajender, S.K., Halami, P.M. (2018). Purification and characterization of fibrinolytic protease from Bacillus amyloliquefaciens MCC2606 and analysis of fibrin degradation product by MS/MS. Preparative Biochemistry & Biotechnology, 7(48),172-180.

Fleury. (2020). Medicina e Saúde. Manual de Diagnósticos: Investigação Diagnóstica dos Distúrbios Hemorrágicos.

Gogoi, D., Arora, N., Kalita, B., Sarma, R., Islam, T., Ghosh, S.S., Devi, R., Mukherjee, A.K. (2018). Anticoagulant mechanism, pharmacological activity, and assessment of preclinical safety of a novel fibrin(ogen)olytic serine protease from leaves of Leucas indica. Scientific Reports, 8 (1), 1-17.

Hu, Y., Yu, D., Wang, Z., Hou, J., Tyagi, R., Liang, Y., Hu, Y. (2019). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Scientific Reports, 9, 9235.

Kasvi. (2019). Análise da Hemostasia: Tempo de Atividade da Protrombina (TAP) e Tempo de Tromboplastina Parcial Ativada (TTPa). https://kasvi.com.br/analise-da-hemostasia/

Kotb E. (2012). Fibrinolytic Bacterial Enzymes with Thrombolytic Activity. Egypt: Springer Briefs in Microbiology.

Kumar, S.S & Sabu A. Fibrinolytic Enzymes for Thrombolytic Therapy. In: LABROU, Nikolaos (ed.). Therapeutic Enzymes: Function and Clinical Implications. Athens: Springer, 345-381.

Lopez-Sendon J., De Lopez, S.E., Bobadilla, J.F., Rubio, R., Bermejo, J., Delcan, J.L (1995). Cardiovascular pharmacology (XIII). The efficacy of different thrombolytic drugs in the treatment of acute myocardial infarct. Revista Española de Cardiología, 48, 407–439.

Medeiros, G.M.S., Marques D.A.V., Porto, T.S., Lima-Filho, J.L., Teixeira, J.A.C., Pessoa-Júnior, A., Porto, A.L.F. (2013). Extraction of Fibrinolytic Proteases from Streptomyces sp. DPUA1576 using PEG-Phosphate Aqueous Two-Phase Systems. Fluid Phase Equilibria, 339, 52-57.

Nascimento, T.P., Sales, A.E., Porto, C.S., Brandão, R.M.P., Campos-Takaki, G.M., Teixeira, J.A.C., Porto, T.S., Porto, A.L.F., Converti, A. (2016). Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). Journal of Chromatography B, 16-24.

Nascimento, T.P., Sales, A.E., Porto, C.S., Brandão, R.M.P., Takaki, G.M.C., Teixeira, J.A.C., Porto, T.S., Porto, A.L.F. (2015). Production and Characterization of New Fibrinolytic Protease from Mucor subtillissimus UCP 1262 in Solid-State Fermentation. Advances in Enzyme Research, 3, 81-91.

Nascimento, T.P., Sales. A.E., Porto, T.S., Costa, R.M.P.B., Breydo, L., Uversky, V.N., Porto, A.L.F., Converti, A. (2017). Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subtilissimus UCP 1262. Bioprocess and Biosystems Engineering, 40 (8), 1209-1219.

Opas (2017). https://www.paho.org/pt/topicos/doencas-cardiovasculares

Park, J.W., Park, J.E., Choi, H.K., Jung, T.W., Yoon, S.M., Lee, J.S. (2013). Purification and characterization of three thermostable alkaline fibrinolytic serine proteases from the polychaete Cirriformia tentaculata. Process Biochemistry, 48(10), 979-987.

Ravikumar G, Gomathi D, Kalaiselvi MUC. (2012). A protease from the medicinal mushroom Pleurotus sajor-caju; production, purification and partial characterization. Asian Pacific Journal of Tropical Biomedicine Coimbatore, 411-417.

SBC, Sociedade Brasileira de Cardiologia. 2020. Cardiômetro. http://www.cardiometro.com.br/

Silva, M.M., Rocha, T.A., Moura, D.F., Chagas, C.A., Aguiar-Júnior, F.C.A., Santos, N.P.S., Sobral, R.V.S., Nascimento, J.M., Leite, A.C.L., Pastrana, L., Brandão, R.M.P., Nascimento, T.P., Porto, A.L.F. (2019). Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regulatory Toxicology and Pharmacology, 9(103), 282-291.

Vijayaraghavan, P., Arasu, M.V., Rajan, R.A., Al-Dhabi, N.A. (2019). Enhanced production of fibrinolytic enzyme by a new Xanthomonas oryzae IND3 using low-cost culture medium by response surface methodology. Saudi Journal of Biological Sciences, 26, 217-224.

Wang, S.L., Wu, Y.Y., Liang, T.W. (2011). Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnology, 28(2), 196-202.

Zago, M.A., Falcão, R.P., Pasquini, R., Spector, N., Covas, D.T., Rego E.M. (2013). Tratado de Hematologia. São Paulo: Atheneu.

Descargas

Publicado

21/01/2022

Cómo citar

MIRANDA, V. M. A. M. .; BARBOSA FILHO, J. P. M. .; COSTA, R. M. P. B. .; LEITE, A. C. L. .; OLIVEIRA, V. de M. .; BATISTA, J. M. da S. .; PASTRANA, L.; NASCIMENTO, T. P. .; PORTO, A. L. F. Evaluación del tiempo de tromboplastina parcial, tiempo de trombina y tiempo de protrombina en plasma tratado con proteasa fibrinolítica. Research, Society and Development, [S. l.], v. 11, n. 2, p. e15311225439, 2022. DOI: 10.33448/rsd-v11i2.25439. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25439. Acesso em: 27 jul. 2024.

Número

Sección

Ciencias de la salud