Potencial nutricional de la fruta Jambo rojo: fibras dietéticas, minerales, potencial antioxidante y bioaccesibilidad de compuestos fenólicos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25578

Palabras clave:

Syzygium malaccense; Composición de monosacáridos; Perfil mineral; Digestión in vitro; Nutracéutico.

Resumen

El Jambo Rojo (JR) es utilizado por la medicina tradicional para tratar la diabetes, hasta el momento no existen informes sobre la relación de su contenido de fibra con la composición de monosacáridos y la bioaccesibilidad de los compuestos fenólicos. El objetivo de este estudio fue caracterizar el perfil nutricional, los minerales, la composición de azúcares, el potencial antioxidante y la accesibilidad a compuestos fenólicos de las partes comestibles del fruto (pulpa y piel). Considerando la fracción comestible, los principales minerales fueron manganeso, hierro, magnesio y zinc, lo que sugiere que puede contribuir a la ingesta diaria recomendada para adultos. La composición de monosacáridos mostró que tanto la pulpa como la cáscara tienen la composición principal glucosa (50,1% y 68,4%) y ácidos urónicos (38,4% y 20,6%), respectivamente. Además, el contenido de compuestos bioactivos y el potencial antioxidante de la fruta son relativamente altos en la pulpa y las cáscaras, principalmente según el ensayo DPPH. Además, se identificaron catorce compuestos fenólicos. Entre ellos, los ácidos p-cumárico y transcinámico mostraron la mayor bioaccesibilidad. Sugerimos el uso de JR en nuevos productos nutracéuticos y alimenticios ya que es una fuente natural de compuestos con antioxidantes naturales.

Citas

AOAC - (Association of Official Analytical Chemistry). (2000). Official Methods of Analysis, (17th ed.), Editorial Board, Washington.

AOAC - (Association of Official Analytical Chemistis) (2005). Official methods of analysis, (18th ed.), Editorial Board, Gaithersburg.

Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative

determination of uronic acids. Analytical Biochemistry, 484–489.

Batista, A. G., Silva. J., Cazarin, C. B., Biasoto, A. C., Sawaya, A. C. H., Prado, M. & Maróstica Junior, M. R. (2017). Red-jambo (Syzygium malaccense): Bioactive compounds in fruits and leaves. LWT- Food Science Technnology, 284-291. 10.1016/j.lwt.2016.05.013.

Batista, A. G., Mendonça, M. C. P., Soares, E. S., da Silva-Maia, J. K., Dionísio, A. P., Sartori, S. R., da Cruz-Hofling, M. A. & Marostica Junior, M. R., (2020). Syzygium malaccense fruit supplementation protects mice brain against high-fat diet impairment and improves cognitive functions. J Funct Foods. 65. https://doi.org/10.1016/j.jff.2019.103745.

Batista, A. G., Mendonça, M. C., Soares, E. S., Silva-Maia, J. K., Dionisio, A. P., Sartori, C. R., Cruz-Hofling, M. A. & Marostica Junior, M. R. (2020). Syzygium malaccense fruit supplementation protects mice brain against high-fat diet impairment and improves cognitive functions. Journal of functional foods. https://doi.org/10.1016/j.jff.2019.103745.

Benzie, I. F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239(1), 70-6. 10.1006/abio.1996.0292.

Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT- Food Science and Technnology, 28(1), 25-30. 10.1016/S0023-6438(95)80008-5.

Delpino-Rius, A., Jordi, E., Vilaró, F., Cubero, M.A., Balcells, M., Canela-Garayoa, R. (2015). Characterization of phenolic compunds in processed fibres from the juice industry. Food Chemistry, Spain, 875-584.

Dernardin, C. C., Hirsch, G., Rocha, R. F., Vizzotto, M., Henriques, A. T., Moreira, J. C. F., Guma, F. T. & Emanuelli, T. (2015). Antioxidant capacity and bioactive compounds of four Brazilian native fruits. Journal of Food and Drug Analysis, Brazil, 387-398. 0.1016/j.foodchem.2014.09.071.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 350–36.

Faria, J. P., Arellano, D. B., Grimaldi, R., Da Silva, L. C. R., Vieira, R. F., Da Silva, D. B. & Agostini-Costa, T. D. (2008). Chemical characterization of pulp of Butia capitata var capitate. Revista Brasileira de Fruticultura, 827-829. 10.1590/S0100-29452008000300045.

Farias, D. P., Neri-Numa, I. A., Araujo, F. F. & Pastore, G. M. (2020). A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306. 10.1016/j.foodchem.2019.125630.

FOOD AND NUTRITION BOARD. (2004). Dietary Reference Intake (DRIs): Recommended intakes for individuals elements. Institute of Medicine, National Academies Press.

Gibbert, L., Sereno, A. B., Andrade, M. T. P. de, Silva, M. A. B. da, Miguel, M. D., Montrucchio, D. P., Messias-Reason, I. J. de, Dantas, A. M., Borges, G. da S. C., Miguel, O. G., Kruger, C. C. H. & Dias, J. de F. G. (2021). Nutritional composition, antioxidant activity and anticancer potential of Syzygium cumini (L.) and Syzygium malaccense (L.) fruits. Res Soc Dev., 10, e5210413743. 10.33448/rsd-v10i4.13743.

Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L., Hidalgo, F., Miyashita, K., Campismo, J. V., Alasalvar, C., Ismail, A. B., Elmore, S. Birch, G. G., Charalmpopoulos, D., Astley, S. B., Pegg, R., Zhou, P. & Finglas, P. (2018). Antioxidant activity, total phenolics and flavonoids contents: Shoul we can in vitro screening methods? Food Chemistry, 471-475.

Haas, I. C. S., Toaldo, I. M., Gomes, T. M., Luna, A. S., Gois, J. S & Bordignon-Luiz, M. T. (2019). Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, 66-74.

Hidalgo, M., Sánchez-Moreno, C., & Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691–696.

Lafay, S. & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 301-311.

Lafay, S., Gil-Izquierdo, A., Manach, C., Morand, C., Besson, C. & Scalbert, A. (2006). Chlorogenic acid is absorbe in its intact form in the stomach of rats. The Journal of Nutrition, 1192-1197.

Magnini, C., Isaac, V. L. B., Correa, M. A. & Salgado, H. R. N. (2013). Caffeic Acid: a review of its potential use for medications and cosmetics. Anal. Methods.

Maqsood, S., Adiamo, O., Ahmad, M. & Mudgil P. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredientes. Food Chemistry, 10.1016/j.foodchem.2019.125522.

Merguedus, A., Kristl, J., Ivancic, A., Sober, A., Sustar, V., Krizan, T. & Lebot, V. (2015). Variation of mineral composition in different parts of taro (Colocasia esculenta) corms. Food Chemistry, 37-46, 10.1016/j.foodchem.2014.08.025.

Nagel, A., Sirisakulwat, S., Carle, R. & Neidhart, S. (2014). An acetate hydroxidegradient for the quantitation of the neutral sugar

and uronic acid profile of pectins by HPAEC-PAD without postcolumn pH adjustment. Journal of Agricultural and Food Chemistry, 2037-2048.

Nunes, P. C., Aquino, J. S., Rockenbach, I. I., & Stamfor, T. L. M. (2016). Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry]. Journal Plos One, 1-11.

Olennikov, D., Kashchenko, N., & Chirikova, N. (2015). In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins: A case of Padma Hepaten formulation. Nutrients, 7(10), 8456–8477.

Palafox-Carlos, H., Ayala-Zavala, J. F. & Gonzalez-Aguilar, G. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidantes. Journal of Food Science, 6-15.

Peixoto, F. M., Fernandes, I., Gouvea, A. C., Santiago, M. C., Borguini, R. G., Mateus, N., Freitas, V., Godoy, R. L. O. & Ferreira, I. M. P. L. V. O. (2016). Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of Functional Foods, 373-381.

Pires, T. C. S. P., Dias, M. I., Barros, L., Calhelha, R. C., Alves, M. J., Oliveira, M. B., Santos-Buelga, C. & Ferreira, I. (2017). Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International, 105, 580-588. 10.1016/j.foodres.2017.11.014.

Qamar, M., Akhtar, S., Ismail, T., Yuan, Y., Ahmad, N., Tawab, A., Ismail, A., Barnard, R. T., Cooper, M. A., Blaskovich, M. A. T. & Ziora, Z. M. (2021). Syzygium cumini (L.),Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. Journal of Ethnopharmacology.

Reidah, L. M. (2013). Characterization of phenolic compounds in highly-consumed vegetable matrices by using advanced analytical technique. University of Granada.

Reynertson, K. A., Yang, H., Jiang, B., Basile, M. J. & Kennelly, E. J. (2008). Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, 109(4), 883–890. 10.1016/j.foodchem.2008.01.021.

Riobó, P. & Gonzalez, E. Coffee and diabetes mellitus. (2008). Medicina Clínica, 131(17).

Rodriguez-Roque M, Rojas-Grau M, Elez-Martinez P. & Martin-Belloso O. (2013). Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. Journal of Agricultural and Food Chemistry, 61, 1859–1867.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Pérez-Jiménes, J., Saura-Calixto, F., & Mancini- Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121, 996–1002.

Rufino, M., Alves, R. E., Fernandes, F. & Brito, E. (2011). Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Research International, 44(7), 2072-2075. 10.1016/j.foodres.2010.07.002.

Saeman, J. F., Moore, W., Mitchell, R. & Millett, M. A. (1954). Tecchniques for the determination of pulp constituents by quantitative paper chromatography. Tappi Journal, 336–343.

Sassaki, G. L., Souza, L. M., Serrato, R. V., Cipriani, T. R., Gorin, P. A. J. & Iacomini, M. (2008). Application of acetate derivatives for gas chromatography–mass spectrometry: Novel approaches on carbohydrates, lipids and amino acids analysis. Journal of Chromatography A, 215–222.

Taheri, Y., Suleria, H. A. R., Martins, N., Sytar, O., Beyatli, A., Yeskaliyeva, B., Seitimova, G., Salehi, B., Semwal, P., Painuli, S., Kumar, A., Azzini, E., Martorell, M., Setzer, W. N., Maroyi, A. & Sharifi-Rad, J. (2020). Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complementary Medicine and Therapies, 20:241. 10.1186/s12906-020-03033-z.

Tamiello, C. S., Nascimento, G. E., Iacomini, M. & Cordeiro, L. M. C. (2018). Arabinogalactan from edible jambo fruit induces different responses on cytokine secretion by THP-1 macrophages in the absence and presence of

proinflammatory stimulus. International Journal of Biological Macromolecules, 107, 35-41, 2018.

Zielinski, H. & Kozlowska, H. (2000). Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008–2016. 10.1021/jf990619o.

Wolfrom, M. L. & Thompson, A. (1963a). Methods in carbohydrate chemistry. New York and London: Academic Press Inc, 65-68.

Wolfrom, M. L., Thompson, A. (1963b). Acetylation. In: Whistler R. L., Wolfrom, M. L., & BeMiller J. N., Methods in carbohydrate chemistry. New York and London: Academic Press Inc, 211-215.

Descargas

Publicado

26/01/2022

Cómo citar

GIBBERT, L.; BAMPI, M.; KERKHOVEN, N. C. .; SERENO, A. B.; PINTO, C. de Q. P.; FERREIRA, S. M. R. .; CORDEIRO, A. M. T. de M. .; MEIRELES, B. R. L. de A. .; BORGES, G. da S. C.; SILVEIRA, J. L. M. .; MIGUEL, O. G. .; DIAS, J. de F. G. .; BERTIN, R. L.; KRUGER, C. C. H. Potencial nutricional de la fruta Jambo rojo: fibras dietéticas, minerales, potencial antioxidante y bioaccesibilidad de compuestos fenólicos. Research, Society and Development, [S. l.], v. 11, n. 2, p. e33111225578, 2022. DOI: 10.33448/rsd-v11i2.25578. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25578. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud