Eficacia antimicrobiana del cemento Portland y el Mineral Trióxido Agregado frente a Enterococcus faecalis y Candida albicans
DOI:
https://doi.org/10.33448/rsd-v11i3.26172Palabras clave:
Mineral Trióxido Agregado; Cimento Portland; Enterococcus faecalis; Candida albicans.Resumen
El objetivo de este estudio fue revisar la literatura disponible sobre las características del cemento Portland y el Mineral Trióxido Agregado con énfasis en su actividad antimicrobiana frente a los patógenos más prevalentes en la reinfección endodóntica. Los cementos Portland y el Mineral Trióxido Agregado, ambos a base de silicato de calcio, son utilizados en diversos ámbitos de la terapia odontológica, sobre todo en los procedimientos endodónticos, ya que estimulan los mecanismos de biomineralización. Están en contacto con las estructuras dentales, hueso y tejido conectivo, debido a ello, se enfrentan a un desafío adicional respecto a sus propiedades antibacterianas y antifúngicas contra diversos microorganismos como el Enterococcus faecalis y Candida albicans; los cuales son resistentes a los procedimientos convencionales de desinfección, sobre todo por su capacidad de formar biopelículas y estar asociados a los fracasos de tratamientos de conductos. En la revisión realizada se evidenció que en general el cemento Portland y el Mineral Trióxido Agregado tienen propiedades antimicrobianas similares y presentan actividad antimicrobiana frente a Enterococcus faecalis y Candida albicans.
Citas
Abraham, S., Al Marzooq, F., Himratul-Aznita, W., Ahmed, H., & Samaranayake, L. (2020). Prevalence, virulence and antifungal activity of C. albicans isolated from infected root canals. BMC Oral Health, 20(1).
Al-Hiyasat, A. S., El-Farraj, H. S., & Alebrahim, M. A. (2021). The effect of calcium hydroxide on dentine composition and root fracture resistance of human teeth: An in vitro study. European Journal of Oral Sciences, 129(4), e12798.
Alghamdi, F., & Shakir, M. (2020). The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus, 12(3).
AlShwaimi, E., Bogari, D., Ajaj, R., Al-Shahrani, S., Almas, K., & Majeed, A. (2016). In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. Journal of Endodontics, 42(11), 1588–1597.
Asgary, S., Eghbal, M. J., Parirokh, M., Ghoddusi, J., Kheirieh, S., & Brink, F. (2009). Comparison of Mineral Trioxide Aggregate’s Composition with Portland Cements and a New Endodontic Cement. Journal of Endodontics, 35(2), 243–250.
Bernal-Treviño, A., González-Amaro, A., Méndez González, V., & Pozos-Guillen, A. (2018). Frequency of Candida in root canals of teeth with primary and persistent endodontic infections. Revista Iberoamericana de Micología, 35(2), 78–82.
Chenicheri, S., R, U., Ramachandran, R., Thomas, V., & Wood, A. (2017). Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. The Open Dentistry Journal, 11(1), 312.
Cooper, P., Chicca, I., Holder, M., & Milward, M. (2017). Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? Journal of Endodontics, 43(9S), S87–S94.
Dawood, A. E., Parashos, P., Rhk, W., Reynolds, E. C., & Manton, D. J. (2017). Calcium silicate-based cements: composition, properties, and clinical applications. Journal of investigative and clinical dentistry, 8(2)
De Souza, L., Yadlapati, M., Lopes, H., Silva, R., Letra, A., & Elias, C. (2017). Physico-chemical and Biological Properties of a New Portland Cement-based Root Repair Material. European Endodontic Journal, 3(1).
Diogo, P., Fernandes, C., Caramelo, F., Mota, M., Miranda, I. M., Faustino, M. A. F., Neves, M. G. P. M. S., Uliana, M. P., de Oliveira, K. T., Santos, J. M., & Gonçalves, T. (2017). Antimicrobial photodynamic therapy against endodontic Enterococcus faecalis and Candida albicans mono and mixed biofilms in the presence of photosensitizers: A comparative study with classical endodontic irrigants. Frontiers in Microbiology, 8, 498.
Dioguardi, M., Di Gioia, G., Illuzzi, G., Laneve, E., Cocco, A., & Troiano, G. (2018). Endodontic irrigants: Different methods to improve efficacy and related problems. European Journal of Dentistry, 12(3), 459–466.
Donnermeyer, D., Bürklein, S., Dammaschke, T., & Schäfer, E. (2019). Endodontic sealers based on calcium silicates: a systematic review. Odontology, 107(4), 421–436.
Ducret, M., Fabre, H., Celle, A., Mallein-Gerin, F., Perrier-Groult, E., Alliot-Licht, B., & Farges, J.C. (2017). Current challenges in human tooth revitalization. Bio-Medical Materials and Engineering, 28(s1), S159–S168.
El-Telbany, M., El-Didamony, G., Askora, A., Ariny, E., Abdallah, D., Connerton, I., & El-Shibiny, A. (2021). Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms, 9(3), 1–19.
ElReash, A. A., Hamama, H., Eldars, W., Lingwei, G., Zaen El-Din, A. M., & Xiaoli, X. (2019). Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health 19(1), 1–10.
Esteki, P., Jahromi, M., & Tahmourespour, A. (2021). In vitro antimicrobial activity of mineral trioxide aggregate, Biodentine, and calcium-enriched mixture cement against Enterococcus faecalis, Streptococcus mutans, and Candida albicans using the agar diffusion technique. Dental Research Journal, 18(1), 3.
Estrela, C., Bammann, L. L., Estrela, C. R., Silva, R. S., & Pécora, J. D. (2000). Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Brazilian Dental Journal, 11(1), 3–9.
Farrugia, C., Baca, P., Camilleri, J., & Arias Moliz, M. T. (2017). Antimicrobial activity of ProRoot MTA in contact with blood. Scientific Reports, 7(1),1–10.
Ganan, M., Lorentzen, S., Gaustad, P., & Sørlie, M. (2021). Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates. Journal of Fungi (Basel, Switzerland), 7(9).
Garg, A., Mala, K., & Kamath, P. (2021). Biofilm models in endodontics-A narrative review. Journal of Conservative Dentistry, 24(1), 2–9.
Guerreiro-Tanomaru, J. M., Trindade-Junior, A., Cesar Costa, B., Da Silva, G. F., Drullis Cifali, L., Basso Bernardi, M. I., & Tanomaru-Filho, M. (2014). Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material. Scientific World Journal, 2014.
Henrique Borges, A., Aguirre Guedes, O., & Evaristo Ricci Volpato, L. (2017). Physicochemical Properties of MTA and Portland Cement after Addition of Aloe Vera. Iranian Endodontic Journal, 12(13), 312–317.
Hou, Y., Wang, L., Zhang, L., Tan, X., Huang, D., & Song, D. (2022). Potential relationship between clinical symptoms and the root canal microbiomes of root filled teeth based on the next-generation sequencing. International Endodontic Journal, 55(1), 18–29.
Jafari, F., Jafari, S., Samadi Kafil, H., Momeni, T., & Jamloo, H. (2017). Antifungal activity of two root canal sealers against different strains of Candida. Iranian Endodontic Journal, 12(1), 98–102.
Janini, A. C. P., Bombarda, G. F., Pelepenko, L. E., & Marcano, M. A. (2021). Antimicrobial activity of calcium silicate-based dental materials: A literature review. Antibiotics, 10(7), 7.
Kapralos, V., Koutroulis, A., Ørstavik, D., Sunde, P. T., & Rukke, H. V. (2018). Antibacterial Activity of Endodontic Sealers against Planktonic Bacteria and Bacteria in Biofilms. Journal of Endodontics, 44(1), 149–154.
Karayasheva, D., & Radeva, E. (2017). Importance of Enterococci (Enterococcus faecalis) for Dental Medicine – Microbiological Characterization, Prevalence and Resistance. International Journal of Science and Research, 6(7), 1970.
Koruyucu, M., Topcuoglu, N., Tuna, E. B., Ozel, S., Gencay, K., Kulekci, G., & Seymen, F. (2015). An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. European Journal of Dentistry, 9(2), 240–245.
Li, Q., & Coleman, N. (2019). Impact of Bi 2 O 3 and ZrO 2 Radiopacifiers on the Early Hydration and C-S-H Gel Structure of White Portland Cement. Journal of Functional Biomaterials, 10(4).
Melo, P. M. R. de, Sobral, A. P. V., Sampaio, G. C., Pinto, I. M. de A., & Shinohara, N. K. S. (2015). Evaluation of cariogenic antibacterial activity of mineral trioxide aggregate and Portland cement. RGO - Revista Gaúcha de Odontologia, 63(2), 181–186.
Mergoni, G., Percudani, D., Lodi, G., Bertani, P., & Manfredi, M. (2018). Prevalence of Candida Species in Endodontic Infections: Systematic Review and Meta-analysis. Journal of Endodontics, 44(11), 1616-1625.e9.
Miyagak, D. C., de Carvalho, E. M. O. F., Robazza, C. R. C., Chavasco, J. K., & Levorato, G. L. (2006). In vitro evaluation of the antimicrobial activity of endodontic sealers. Brazilian Oral Research, 20(4), 303–306.
Moazami, F., Gholami, A., Mehrabi, V., & Ghahramani, Y. (2020). Evaluation of the antibacterial and antifungal effects of ProRoot MTA and nano-fast cement: An in vitro study. Journal of Contemporary Dental Practice, 21(7), 760–764.
Morgental, R. D., Vier-Pelisser, F. V., Oliveira, S. D., Antunes, F. C., Cogo, D. M., & Kopper, P. M. P. (2011). Antibacterial activity of two MTA-based root canal sealers. International Endodontic Journal, 44(12), 1128–1133.
Nam, K. Y. (2017). Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. Journal of Advanced Prosthodontics, 9(3), 217–223.
Nashaat, Y., Ahmed, L., & Nada, O. (2019). Comparative study of the antibacterial effect of MTA. Nano-MTA, Portland cement, and nano-Portland cement. Egyptian Dental Journal, 33(65), 701-706.
Nayyar, P., Sethi, A., Thakur, D., Khullar, S., Gayati, S., & Adarsh, K. (2021). Antibacterial Effect of Silver Nanoparticle Gel as an Intracanal Medicament in Combination with Other Medicaments against Enterococcus faecalis: An In vitro Study. Journal of Pharmacy & Bioallied Sciences, 13(1), S408.
Nurdin, D., Sari, M. I., Adang, R. A. F., Primathena, I., & Cahyanto, A. (2021). Antifungal Effectiveness between Tricalcium Silicate-White Portland Cements Added Bi2O3 and Mineral Trioxide Aggregate Against Candida albicans. The Open Dentistry Journal, 14(1), 757–762.
Osiro, A., Kariuki, D., & GAthece, W. (2018). Composition and particle size of mineral trioxide aggregate, portland cement and synthetic geopolymers. East African Medical Journal, 95(5), 1522.
Parirokh, M., Torabinejad, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part I: vital pulp therapy. International Endodontic Journal, 51(2), 177–205.
Pelepenko, L. E., Saavedra, F., Tbm, A., & others. (2021). Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clinical Oral Investigation, 25(2), 663–672.
Pereira, D., Seneviratne, C., Koga-Ito, C., & Samaranayake, L. (2018). Is the oral fungal pathogen Candida albicans a cariogen? Oral Diseases, 24(4), 518–526.
Persoon, I. F., Crielaard, W., & Özok, A. R. (2017). Prevalence and nature of fungi in root canal infections: a systematic review and meta-analysis. International Endodontic Journal, 50(11), 1055–1066.
Persoon, Ilona F., Buijs, M. J., Özok, A. R., Crielaard, W., Krom, B. P., Zaura, E., & Brandt, B. W. (2017). The mycobiome of root canal infections is correlated to the bacteriome. Clinical Oral Investigations, 21(5), 1871.
Prada, I., Micó-Muñoz, P., Giner-Lluesma, T., Micó-Martínez, P., Collado-Castellano, N., & Manzano-Saiz, A. (2019). Influence of microbiology on endodontic failure. Literature review. Medicina Oral, Patología Oral y Cirugía Bucal, 24(3), e364.
Primathena, I., Nurdin, D., Hermawan, H., & Cahyanto, A. (2021). Synthesis, Characterization, and Antibacterial Evaluation of a Cost-Effective Endodontic Sealer Based on Tricalcium Silicate-White Portland Cement. Materials, 14(2), 1–9.
Queiroz, M. B., Torres, F. F. E., Rodrigues, E. M., Viola, K. S., Bosso-Martelo, R., Chavez-Andrade, G. M., Guerreiro-Tanomaru, J. M., & Tanomaru-Filho, M. (2021). Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dental Materials, 37(2), 311–320.
Qutieshat, A. S., Al-Hiyasat, A. S., & Darmani, H. (2019). Biocompatibility evaluation of Jordanian Portland cement for potential future dental application. Journal of Conservative Dentistry, 22(3), 249–254.
Rojas, B., Soto, N., Villalba, M., Bello-Toledo, H., Meléndrez-Castro, M., & Sánchez-Sanhueza, G. (2021). Antibacterial Activity of Copper Nanoparticles (CuNPs) against a Resistant Calcium Hydroxide Multispecies Endodontic Biofilm. Nanomaterials, 11(9).
Sahia, D., Gaikwad, A., Samuel, R., Aher, G., Gulve, M., & Kolhe, S. (2018). Antimicrobial Efficacy of Different Endodontic Sealers against Enterococcus faecalis: An In vitro Study. Journal of International Society of Preventive & Community Dentistry, 8(2), 104.
Said, M. S., Tirthani, E., & Lesho, E. (2021). Enterococcus Infections. Treasure Island StatPearl.
Shin, M., Chen, J. W., Tsai, C. Y., Aprecio, R., Zhang, W., Yochim, J. M., Teng, N., & Torabinejad, M. (2017). Cytotoxicity and antimicrobial effects of a new fast-set MTA. BioMed Research International, 1-6
Silva, E. J. N. L., Herrera, D. R., Rosa, T. P., Duque, T. M., Jacinto, R. C., Gomes, B. P. F. D. A., & Zaia, A. A. (2014). Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material. Journal of Applied Oral Science, 22(1), 61–67.
Song, W., & Ge, S. (2019). Application of Antimicrobial Nanoparticles in Dentistry. Molecules 24(6), 1033.
Swimberghe, R., Coenye, T., De Moor, R., & Meire, R. (2019). Biofilm model systems for root canal disinfection: a literature review. International Endodontic Journal, 52(5), 604–628.
Tanomaru-Filho, M., Tanomaru, J. M. G., Barros, D. B., Watanabe, E., & Ito, I. Y. (2007). In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement. Journal of Oral Science, 49(1), 41–45.
Torabinejad, M., Hong, C. U., Ford, T. R. P., & Kettering, J. D. (1995). Antibacterial effects of some root end filling materials. Journal of Endodontics, 21(8), 403–406.
Yang, Y. W., Yu, F., Zhang, H. C., Dong, Y., Qiu, Y. N., Jiao, Y., Xing, X. D., Tian, M., Huang, L., & Chen, J. H. (2018). Physicochemical properties and cytotoxicity of an experimental resin-based pulp capping material containing the quaternary ammonium salt and Portland cement. International Endodontic Journal, 51(1), 26–40.
Yoo, Y., Kim, A., Perinpanayagam, H., Han, S., & Kum, K. (2020). Candida albicans Virulence Factors and Pathogenicity for Endodontic Infections. Microorganisms, 8(9), 1–18.
Zhou, L., Zhao, X., Li, M., Lu, Y., & Ai, C. (2021). Antifungal activity of silver nanoparticles synthesized by iturin against Candida albicans in vitro and in vivo. Applied Microbiology and Biotechnology, 105(9), 3759–3770.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Eduardo Quea Cahuana; Wiliam Ramirez Mesías; María del Carmen Manrique Coras; Silvana Anduaga Lescano; Javier Basilio Galvez; Shilla Anchelia Ramirez; Brando Mellado Alfaro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.