Efecto de la densidad de almacenamiento del biofiltro en la capacidad de filtración de nutrientes de Ulva lactuca
DOI:
https://doi.org/10.33448/rsd-v11i3.26173Palabras clave:
Sistema Integrado de Acuicultura Multitrófica; Macroalgas; Agricultura marina; Acuicultura sostenible.Resumen
Este trabajo tuvo como objetivo evaluar la capacidad de filtrado de nitrógeno y fósforo inorgánicos por biofiltro de la macroalga Ulva lactuca en función de la densidad de población en un sistema AMTI en recirculación de agua. Las macroalgas se cultivaron en 20 unidades experimentales, con 5 densidades de almacenamiento (2, 4, 6, 8 y 10 kg.m-3) y 4 repeticiones. Las concentraciones de los nutrientes amonio (N-NH3), nitrito (N-NO2), nitrato (N-NO3) y fosfato (P-PO4) se analizaron en el momento de la interrupción del suministro (06:00) y después de las 12 horas (18:00) para la evaluación de la filtración de nutrientes. No hubo variaciones significativas (p> 0.05) entre los valores de eficiencia de filtración de nitrógeno (EF-N) y fósforo (EF-P) y de la tasa de filtración de nitrógeno (TF-N) y fósforo (TF-P ) en función de la densidad de población. Sin embargo, se observó un efecto (p <0.05) de la densidad de población sobre el índice de filtración de nitrógeno (IF-N) y fósforo (IF-P), donde se observaron los índices más altos para las densidades de carga más bajas. La densidad de almacenamiento de las macroalgas interfiere con la capacidad de filtración de nutrientes, donde las densidades de almacenamiento más bajas proporcionan una mayor capacidad de filtración de las macroalgas.
Citas
Adharini, R. I., Murwantoko, M., Probosunu, N., Setiawan, R. Y., & Satriyo, T. B. (2021). The effectiveness of seaweeds as biofilter for reducing wastewater nutrient and preventing water pollution from hybrid grouper culture. Jurnal Ilmiah Perikanan dan Kelautan, 13(2). 10.20473/jipk.v13i2.28105
Al‐Hafedh, Y. S., Alam, A., & Buschmann, A. H. (2015). Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates. Reviews in Aquaculture, 7(3), 161-171. 10.1111/raq.12060
Ben-Ari, T., Neori, A., Ben-Ezra, D., Shauli, L., Odintsov, V., & Shpigel, M. (2014). Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture, 434, 493-498. 10.1016/j.aquaculture.2014.08.034
Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. (2003). Aquaculture, 226(1), 101-112. 10.1016/S0044-8486(03)00471-X
Boyd, C. E., & Queiroz, J. F. (2004). Manejo das condições do sedimento do fundo e da qualidade da água e dos efluentes de viveiros. In: Cyrino, J. E. P., Urbinati, E. C., Fracalossi, D. M. et al. (Eds.) Tópicos especiais em piscicultura de água doce tropical intensiva. (pp. 25-43). Jaboticabal: Sociedade Brasileira de Aquacultura e Biologia Aquática,
Chopin T., Buschmann A. H., Halling C., Troell M., Kautsky N., & Neori A. (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. Journal of Phycology, 37,75-986. 10.1046/j.1529-8817.2001.01137.x
Chopin, T. (2010). Integrated multi-trophic aquaculture. Advancing the aquaculture. Agenda: Workshop Proceedings. OECD Pblishing. 195-217. 10.1787/9789264088726-em
Coutinho, R., & Zingmark, R. (1993). Interactions of light and nitrogen on photosynthesis and growth of the marine macroalga Ulva curvata (Kützing) De Toni. Journal of experimental marine biology and ecology, 167(1), 11-19. 10.1016/0022-0981(93)90180-V
Cui, J., Zhang, J., Huo, Y., Zhou, L., Wu, Q., Chen, L., & He, P. (2015). Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity. Marine pollution bulletin, 101(2), 660-666. 10.1016/j.marpolbul.2015.10.033
Dong, X., Lv, L., Zhao, W., Yu, Y., & Liu, Q. (2018). Optimization of integrated multi-trophic aquaculture systems for the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture Environment Interactions, 10, 547-556. 10.3354/aei00287
Duke, C.S., Lapointe, B.E., & Ramus, J. (1986). Effects of light on growth, rubpcase activity and chemical composition of ulva species (chlorophyta) Journal of phycology, 22(3), 362-370. 10.1111/j.1529-8817.1986.tb00037.x
FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. 10.4060/ca9229en
Goddek, S., Delaide, B. P., Joyce, A., Wuertz, S., Jijakli, M. H., Gross, A., & Keesman, K. J. (2018). Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquacultural engineering, 83, 10-19. 10.1016/j.aquaeng.2018.07.003
Hayashi, L., Yokoya, N.S., Ostini, S., Pereira, R.T., Braga, E. S., & Oliveira, E. C. (2008). Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277(3),185-191 10.1016/j.aquaculture.2008.02.024
He, Y., Ye, Y., & Shen, S. (2020). Effects of light and salinity on carotenoid biosynthesis in Ulva prolifera. Acta Oceanologica Sinica, 39(10), 50-57. 10.1007/s13131-020-1577-1
HURD, C.L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology, 36(3), 453-472. 10.1046/j.1529-8817.2000.99139.x
Jiang, H., Gong, J., Lou, W., & Zou, D. (2019). Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan’ao Island, Shantou, China. Environmental Science and Pollution Research, 26(13), 13346-13353. 10.1007/s11356-019-04775-1
Montanhini Neto, R., & Ostrensky, A. (2015). Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquaculture Research, 46(6), 1309-1322. 10.1111/are.12280
Msuya, F. E., & Neori, A. (2008). Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. Journal of Applied Phycology, 20(6), 1021-1031 10.1007/s10811-007-9300-6
Neori, A., Shpigel, M., & Ben-Ezra, D. (2000). A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186(3–4), 279–291. 10.1016/S0044-8486(99)00378-6
Neori, A., Cohen, I., & Gordin, H. (1991) Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Botanica Marina, 34(6), 483-490. 10.1515/botm.1991.34.6.483
Oliva Teles, A., Couto, A., Enes, P., & Peres, H. (2020). Dietary protein requirements of fish–a meta‐analysis. Reviews in Aquaculture.12(3), 1445-1477. 10.1111/raq.12391
Queirós, A. S., Circuncisão, A. R., Pereira, E., Válega, M., Abreu, M. H., Silva, A., & Cardoso, S. M. (2021). Valuable Nutrients from Ulva rigida: Modulation by Seasonal and Cultivation Factors. Applied Sciences, 11(13), 6137. 10.3390/app11136137
Rautenberger, R., Fernandez, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L., & Roleda, M. Y. (2015). Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and evolution, 5(4), 874-888. 10.1002/ece3.1382
Revilla-Lovano, S., Sandoval-Gil, J. M., Zertuche-González, J. A., Belando-Torrentes, M. D., Bernardeau-Esteller, J., Rangel-Mendoza, L. K., & del Carmen Ávila-López, M. (2021). Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Research, 56, 102316. 10.1016/j.algal.2021.102316
Shahar, B., & Guttman, L. (2021). Integrated biofilters with Ulva and periphyton to improve nitrogen removal from mariculture effluent. Aquaculture, 532, 736011. 10.1016/j.aquaculture.2020.736011
Soto, D. (2009). Integrated mariculture: a global review (No. 529). Food and Agriculture Organization of the United Nations (FAO). Rome, 183p
Traugott, H., Zollmann, M., Cohen, H., Chemodanov, A., Liberzon, A., & Golberg, A. (2020). Aeration and nitrogen modulated growth rate and chemical composition of green macroalgae Ulva sp. cultured in a photobioreactor. Algal Research, 47, 101808. 10.1016/j.algal.2020.101808
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ricardo de Oliveira Soares; Beatriz Castelar; Marcelo Duarte Pontes
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.