Efeito da densidade de estocagem do biofiltro na capacidade de filtração de nutrientes da Ulva lactuca
DOI:
https://doi.org/10.33448/rsd-v11i3.26173Palavras-chave:
Sistema de Aquicultura Multitrófica Integrada; Macroalga; Agricultura Marinha; Aquicultura sustentável.Resumo
O presente trabalho buscou avaliar a capacidade de filtração de nitrogênio e fósforo inorgânicos por biofiltro da macroalga Ulva lactuca em função da densidade de estocagem em sistema de AMTI em recirculação de água. As macroalgas foram cultivadas em 20 unidades experimentais, com 5 densidades de estocagem (2, 4, 6, 8 e 10 kg.m-3) e 4 repetições. As concentrações dos nutrientes amônia (N-NH3), nitrito (N-NO2), nitrato (N-NO3) e fosfato (P-PO4) foram analisadas no momento da interrupção do abastecimento (06:00) e após 12 horas (18:00), para avaliação da filtração de nutrientes. Não foram observadas variações significativas (p>0,05) entre os valores da eficiência de filtração de nitrogênio (EF-N) e fósforo (EF-P) e da taxa de filtração de nitrogênio (TF-N) e fósforo (TF-P) em função da densidade de estocagem. Porém, foi observado efeito (p<0,05) da densidade de estocagem sobre o índice de filtração de nitrogênio (IF-N) e fósforo (IF-P), onde os maiores índices foram observados para as menores densidades de estocagem. A densidade de estocagem da macroalga interfere na capacidade de filtração de nutrientes, onde as menores densidades de estocagem proporcionam maior capacidade de filtração da macroalga.
Referências
Adharini, R. I., Murwantoko, M., Probosunu, N., Setiawan, R. Y., & Satriyo, T. B. (2021). The effectiveness of seaweeds as biofilter for reducing wastewater nutrient and preventing water pollution from hybrid grouper culture. Jurnal Ilmiah Perikanan dan Kelautan, 13(2). 10.20473/jipk.v13i2.28105
Al‐Hafedh, Y. S., Alam, A., & Buschmann, A. H. (2015). Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates. Reviews in Aquaculture, 7(3), 161-171. 10.1111/raq.12060
Ben-Ari, T., Neori, A., Ben-Ezra, D., Shauli, L., Odintsov, V., & Shpigel, M. (2014). Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture, 434, 493-498. 10.1016/j.aquaculture.2014.08.034
Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. (2003). Aquaculture, 226(1), 101-112. 10.1016/S0044-8486(03)00471-X
Boyd, C. E., & Queiroz, J. F. (2004). Manejo das condições do sedimento do fundo e da qualidade da água e dos efluentes de viveiros. In: Cyrino, J. E. P., Urbinati, E. C., Fracalossi, D. M. et al. (Eds.) Tópicos especiais em piscicultura de água doce tropical intensiva. (pp. 25-43). Jaboticabal: Sociedade Brasileira de Aquacultura e Biologia Aquática,
Chopin T., Buschmann A. H., Halling C., Troell M., Kautsky N., & Neori A. (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. Journal of Phycology, 37,75-986. 10.1046/j.1529-8817.2001.01137.x
Chopin, T. (2010). Integrated multi-trophic aquaculture. Advancing the aquaculture. Agenda: Workshop Proceedings. OECD Pblishing. 195-217. 10.1787/9789264088726-em
Coutinho, R., & Zingmark, R. (1993). Interactions of light and nitrogen on photosynthesis and growth of the marine macroalga Ulva curvata (Kützing) De Toni. Journal of experimental marine biology and ecology, 167(1), 11-19. 10.1016/0022-0981(93)90180-V
Cui, J., Zhang, J., Huo, Y., Zhou, L., Wu, Q., Chen, L., & He, P. (2015). Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity. Marine pollution bulletin, 101(2), 660-666. 10.1016/j.marpolbul.2015.10.033
Dong, X., Lv, L., Zhao, W., Yu, Y., & Liu, Q. (2018). Optimization of integrated multi-trophic aquaculture systems for the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture Environment Interactions, 10, 547-556. 10.3354/aei00287
Duke, C.S., Lapointe, B.E., & Ramus, J. (1986). Effects of light on growth, rubpcase activity and chemical composition of ulva species (chlorophyta) Journal of phycology, 22(3), 362-370. 10.1111/j.1529-8817.1986.tb00037.x
FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. 10.4060/ca9229en
Goddek, S., Delaide, B. P., Joyce, A., Wuertz, S., Jijakli, M. H., Gross, A., & Keesman, K. J. (2018). Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquacultural engineering, 83, 10-19. 10.1016/j.aquaeng.2018.07.003
Hayashi, L., Yokoya, N.S., Ostini, S., Pereira, R.T., Braga, E. S., & Oliveira, E. C. (2008). Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277(3),185-191 10.1016/j.aquaculture.2008.02.024
He, Y., Ye, Y., & Shen, S. (2020). Effects of light and salinity on carotenoid biosynthesis in Ulva prolifera. Acta Oceanologica Sinica, 39(10), 50-57. 10.1007/s13131-020-1577-1
HURD, C.L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology, 36(3), 453-472. 10.1046/j.1529-8817.2000.99139.x
Jiang, H., Gong, J., Lou, W., & Zou, D. (2019). Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan’ao Island, Shantou, China. Environmental Science and Pollution Research, 26(13), 13346-13353. 10.1007/s11356-019-04775-1
Montanhini Neto, R., & Ostrensky, A. (2015). Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquaculture Research, 46(6), 1309-1322. 10.1111/are.12280
Msuya, F. E., & Neori, A. (2008). Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. Journal of Applied Phycology, 20(6), 1021-1031 10.1007/s10811-007-9300-6
Neori, A., Shpigel, M., & Ben-Ezra, D. (2000). A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186(3–4), 279–291. 10.1016/S0044-8486(99)00378-6
Neori, A., Cohen, I., & Gordin, H. (1991) Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Botanica Marina, 34(6), 483-490. 10.1515/botm.1991.34.6.483
Oliva Teles, A., Couto, A., Enes, P., & Peres, H. (2020). Dietary protein requirements of fish–a meta‐analysis. Reviews in Aquaculture.12(3), 1445-1477. 10.1111/raq.12391
Queirós, A. S., Circuncisão, A. R., Pereira, E., Válega, M., Abreu, M. H., Silva, A., & Cardoso, S. M. (2021). Valuable Nutrients from Ulva rigida: Modulation by Seasonal and Cultivation Factors. Applied Sciences, 11(13), 6137. 10.3390/app11136137
Rautenberger, R., Fernandez, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd, C. L., & Roleda, M. Y. (2015). Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). Ecology and evolution, 5(4), 874-888. 10.1002/ece3.1382
Revilla-Lovano, S., Sandoval-Gil, J. M., Zertuche-González, J. A., Belando-Torrentes, M. D., Bernardeau-Esteller, J., Rangel-Mendoza, L. K., & del Carmen Ávila-López, M. (2021). Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Research, 56, 102316. 10.1016/j.algal.2021.102316
Shahar, B., & Guttman, L. (2021). Integrated biofilters with Ulva and periphyton to improve nitrogen removal from mariculture effluent. Aquaculture, 532, 736011. 10.1016/j.aquaculture.2020.736011
Soto, D. (2009). Integrated mariculture: a global review (No. 529). Food and Agriculture Organization of the United Nations (FAO). Rome, 183p
Traugott, H., Zollmann, M., Cohen, H., Chemodanov, A., Liberzon, A., & Golberg, A. (2020). Aeration and nitrogen modulated growth rate and chemical composition of green macroalgae Ulva sp. cultured in a photobioreactor. Algal Research, 47, 101808. 10.1016/j.algal.2020.101808
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Ricardo de Oliveira Soares; Beatriz Castelar; Marcelo Duarte Pontes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.