El tratamiento con ácido retinoico todo trans provoca apoptosis sin inestabilidad cromosómica en células madre derivadas de tejido adiposo y puede actuar iniciando el proceso de oscurecimiento

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i3.26787

Palabras clave:

Mesoterapia; Citotoxicidad; Células madre; ATRA; Oscureciendo.

Resumen

Introducción: El conocimiento sobre la biología de la obesidad y la inducción de apoptosis de células madre derivadas del tejido adiposo humano puede ayudar en el desarrollo de nuevas terapias. Objetivo: La presente investigación tuvo como objetivo investigar el efecto toxicogenético del ácido transretinoico (ATRA), así como su influencia en la diferenciación adipogénica y la expresión de genes relacionados con el daño del ADN, el ciclo celular y la termogénesis. Metodología: Los cultivos celulares de células madre se trataron durante 12 horas con ATRA (20.75 μM) y se realizó diferenciación adipogénica, ensayo cometa, micronúcleo, muerte celular, ciclo celular y qPCR. Resultados: El tratamiento con ATRA disminuyó la capacidad de diferenciación adipogénica de las células madre. El ensayo del cometa demostró un aumento en la frecuencia de nucleoides con daño genómico. Sin embargo, estos daños no se fijaron a nivel cromosómico, ya que el momento de la cola no fue significativo. El tratamiento con ATRA aumentó la citotoxicidad y aumentó la muerte celular por apoptosis. La expresión relativa de CHEK-1, CHEK-2, CDC25A, CDC25C, ATM y ATR disminuyó y solo UCP1 aumentó significativamente. Conclusión: Los resultados del presente estudio demuestran que el uso de ATRA induce daño genómico en células madre, pero se elimina con el proceso de apoptosis. La administración de ATRA no causó inestabilidad cromosómica, lo que sugiere seguridad toxicogenética. También se consideró que ATRA puede activar el efecto de oscurecimiento de estas células. Así, este compuesto se considera un candidato prometedor para el desarrollo de nuevas terapias para el tratamiento de la obesidad y/o grasa localizada mediante el uso de mesoterapia.

Biografía del autor/a

Andréia Conceição Milan Brochado Antoniolli-Silva, Universidade Federal de Mato Grosso do Sul

Centro de Investigación en Células Madre, Terapia Celular y Genética Toxicológica (CeTroGen), Hospital Universitario “Maria Aparecida Pedrossian”, Empresa Brasileña de Servicios Hospitalarios (EBSERH), Campo Grande, Mato Grosso do Sul, Brasil

Universidad Federal de Mato Grosso do Sul (UFMS), Programa de Posgrado en Salud y Desarrollo en la Región Centro-Oeste, Facultad de Medicina (FAMED), Campo Grande, Mato Grosso do Sul, Brasil

Rodrigo Juliano Oliveira, Universidade Federal de Mato Grosso do Sul; Universidade Estadual de Londrina

 Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), “Maria Aparecida Pedrossian” University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil

Federal University of Mato Grosso do Sul (UFMS), Graduate Program in Health and Development in the Central-West Region, Faculty of Medicine (FAMED), Campo Grande, Mato Grosso do Sul, Brazil

State University of Londrina (UEL), Graduate Programme in Genetics and Molecular Biology, Department of General Biology, Londrina, Paraná, Brazil

Citas

Ailhaud, G., & Hauner, H. (2004). Development of white adipose tissue. In: Marcel Dekker Inc. New Yord USA.

Biazi, B. I., D'epiro, G. F. R., Zanetti, T. A., Oliveira, M. T., Ribeiro, L. R., & Mantovani, M. S. (2017). Risk assessment via metabolism and cell growth inhibition in a HepG2/C3A cell line upon treatment with Arpadol and its active component Harpagoside. Phytotherapy research, 31(3), 387-394.

Bonet, M., Ribot, J., Felipe, F., & Palou, A. (2003). Vitamin A and the regulation of fat reserves. Cellular and Molecular Life Sciences CMLS, 60(7), 1311-1321.

de Carvalho Schweich, L., de Oliveira, E. J. T., Pesarini, J. R., Hermeto, L. C., Camassola, M., Nardi, N. B., & Oliveira, R. J. (2017). All-trans retinoic acid induces mitochondria-mediated apoptosis of human adipose-derived stem cells and affects the balance of the adipogenic differentiation. Biomedicine & Pharmacotherapy, 96, 1267-1274.

de Oliveira, E. J. T., Pessatto, L. R., de Freitas, R. O. N., Pelizaro, B. I., Rabacow, A. P. M., Vani, J. M., & Antoniolli-Silva, A. C. M. B. (2018). New Bis copper complex ((Z)-4-((4-chlorophenyl) amino)-4-oxobut-2-enoyl) oxy): Cytotoxicity in 4T1 cells and their toxicogenic potential in Swiss mice. Toxicology and applied pharmacology.

Di Francesco, A., Cusano, G., Franzese, O., Orienti, I., Falconi, M., Vesci, L., & Riccardi, R. (2015). Resistance to the atypical retinoid ST1926 in SK-N-AS cells selected the subline rAS-ST with enhanced sensitivity to ATRA mediated by not conventional mechanisms: DNA damage, G2 accumulation and late telomerase inhibition. Toxicology in Vitro, 29(7), 1628-1638.

Fraser, J., Wulur, I., Alfonso, Z., Zhu, M., & Wheeler, E. (2007). Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy, 9(5), 459-467.

Fruhbeck, G., Gómez-Ambrosi, J., Muruzábal, F. J., & Burrell, M. A. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology-Endocrinology And Metabolism, 280(6), E827-E847.

Giralt, M., & Villarroya, F. (2013). White, Brown, Beige/Brite: Different Adipose Cells for Different Functions? Endocrinology, 154(9), 2992-3000. https://doi.org/10.1210/en.2013-1403

Hermeto, L., DeRossi, R., Oliveira, R., Pesarini, J., Antoniolli-Silva, A., Jardim, P., & Justulin, L. (2016). Effects of intra-articular injection of mesenchymal stem cells associated with platelet-rich plasma in a rabbit model of osteoarthritis. Genet Mol Res, 15, 3.

Hermeto, L., Oliveira, R., Matuo, R., Jardim, P., DeRossi, R., Antoniolli, A., & antana, Á. (2015). Evaluation of pH effects on genomic integrity in adipose-derived mesenchymal stem cells using the comet assay. Genet Mol Res, 14(1), 339-348.

Kuryłowicz, A., & Puzianowska-Kuźnicka, M. (2020). Induction of adipose tissue browning as a strategy to combat obesity. International journal of molecular sciences, 21(17), 6241.

Lobo, G. P., Amengual, J., Li, H. N. M., Golczak, M., Bonet, M. L., Palczewski, K., & Von Lintig, J. (2010). β, β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β, β-carotene oxygenase 1-dependent manner. Journal of biological chemistry, 285(36), 27891-27899.

Markarian, C. F., Frey, G. Z., Silveira, M. D., Milani, A. R., Ely, P. B., Horn, A. P., & Camassola, M. (2014). Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnology letters, 36(4), 693-702.

Moon, H., Guo, D., Song, H., Kim, I., Jin, H., Kim, Y., & Cho, C. (2007). Regulation of adipocyte differentiation by PEGylated all-trans retinoic acid: reduced cytotoxicity and attenuated lipid accumulation. The journal of nutritional biochemistry, 18(5), 322-331.

Morikawa, K., Hanada, H., Hirota, K., Nonaka, M., & Ikeda, C. (2013). All‐trans retinoic acid displays multiple effects on the growth, lipogenesis and adipokine gene expression of AML‐I preadipocyte cell line. Cell biology international, 37(1), 36-46.

Navarro, S. D., Pessatto, L. R., de Souza, A. M., de Oliveira, E. J. T., Auharek, S. A., Vilela, L. C., & Cáceres, O. I. A. (2018). Resorcinolic lipid 3-heptyl-3, 4, 6-trimethoxy-3H-isobenzofuran-1-one is a strategy μfor melanoma treatment. Life sciences.

Noy, N. (2010). Between death and survival: retinoic acid in regulation of apoptosis. Annual review of nutrition, 30, 201-217.

Oliveira, R. J., Matuo, R., Da Silva, A. F., Matiazi, H. J., Mantovani, M. S., & Ribeiro, L. R. (2007). Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicology in Vitro, 21(1), 41-52.

Oliveira, R. J., Ribeiro, L. R., Da Silva, A. F., Matuo, R., & Mantovani, M. S. (2006). Evaluation of antimutagenic activity and mechanisms of action of β-glucan from barley, in CHO-k1 and HTC cell lines using the micronucleus test. Toxicology in vitro, 20(7), 1225-1233.

Pesarini, J. R., Oliveira, R. J., Pessatto, L. R., Antoniolli-Silva, A. C. M. B., Felicidade, I., Nardi, N. B., & Ribeiro, L. R. (2017). Vitamin D: Correlation with biochemical and body composition changes in a southern Brazilian population and induction of cytotoxicity in mesenchymal stem cells derived from human adipose tissue. Biomedicine & Pharmacotherapy, 91, 861-871.

Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), e36-e36.

Rabacow, A. P. M., Meza, A., de Oliveira, E. J. T., de David, N., Vitor, N., Antoniolli-Silva, A. C. M. B., & de Lima, D. P. (2018). Evaluation of the Antitumor Potential of the Resorcinolic Lipid 3-Heptyl-3, 4, 6-trimethoxy-3H-isobenzofuran-1-one in Breast Cancer Cells. Anticancer research, 38(8), 4565-4576.

Ribot, J., Felipe, F., Bonet, M. L., & Palou, A. (2001). Changes of adiposity in response to vitamin A status correlate with changes of PPARγ2 expression. Obesity, 9(8), 500-509.

Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual review of biochemistry, 73(1), 39-85.

Schweich-Adami, L. d. C., Bernardi, L., Baranoski, A., Rodrigues, T. d. A. F., Antoniolli-Silva, A. C. M. B., & Oliveira, R. J. (2021). The enzymatic disaggregation by trypsin does not alter cell quality and genomic stability of adipose-derived stem cells cultivated for human cell therapy. Cell and tissue banking. https://doi.org/10.1007/s10561-021-09958-0

Takeda, K., Sriram, S., Chan, X. H. D., Ong, W. K., Yeo, C. R., Tan, B., & Jiang, H. (2016). Retinoic acid mediates visceral-specific adipogenic defects of human adipose-derived stem cells. Diabetes, db151315.

Tokarz, P., Piastowska-Ciesielska, A. W., Kaarniranta, K., & Blasiak, J. (2016). All-trans retinoic acid modulates DNA damage response and the expression of the VEGF-A and MKI67 genes in ARPE-19 cells subjected to oxidative stress. International journal of molecular sciences, 17(6), 898.

von Stechow, L., van de Water, B., & Danen, E. H. (2014). Unraveling the DNA damage response signaling network through RNA interference screening. In Toxicogenomics-Based Cellular Models (pp. 35-54). Elsevier.

Descargas

Publicado

07/03/2022

Cómo citar

SCHWEICH-ADAMI, L. de C. .; ANTONIOLLI-SILVA, A. C. M. B. .; OLIVEIRA, R. J. El tratamiento con ácido retinoico todo trans provoca apoptosis sin inestabilidad cromosómica en células madre derivadas de tejido adiposo y puede actuar iniciando el proceso de oscurecimiento. Research, Society and Development, [S. l.], v. 11, n. 3, p. e53511326787, 2022. DOI: 10.33448/rsd-v11i3.26787. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26787. Acesso em: 22 ene. 2025.

Número

Sección

Ciencias de la salud