Probióticos: ¿una espada o un escudo en el resultado de COVID-19?
DOI:
https://doi.org/10.33448/rsd-v11i4.27165Palabras clave:
Microbiota; Disbiosis; COVID-19; Uso racional de antibióticos.Resumen
¿Cuánto frenesí podría causar una infección viral? El virus de la familia de los betacoronavirus, SARS-CoV-2, agente del COVID-19, ha sacudido las estructuras económicas y sanitarias de todo el mundo desde finales de 2019. Son varios los intentos de evitar la propagación de este virus, a partir de medidas sanitarias eficaces , o la "fiebre del oro" por el reposicionamiento de fármacos, hasta el desarrollo acelerado de vacunas. En este sentido, se ha incrementado aún más el uso empírico de antibióticos en pacientes hospitalizados para evitar las coinfecciones bacterianas, lo que podría ser un factor agravante de desenlaces clínicos desfavorables. Sin embargo, el uso no racional de estos fármacos, además de contribuir a la aparición de microorganismos multirresistentes, puede contribuir a una situación preocupante, la disbiosis intestinal, un evento de proporciones "pleiotrópicas", que puede empeorar significativamente el SARS-CoV- 2. Diferentes estudios reportan que pacientes hospitalizados con COVID-19 han mostrado una reducción en la población de bacterias probióticas productoras de butirato, como Faecalibacterium prausnitzii, además de una reducción en la relación Firmicute/Bacteroidetes y un aumento en la proporción de Actinobacteria, entre otros patógenos oportunistas. Este desequilibrio en la microbiota intestinal se ha correlacionado con un aumento de los indicadores bioquímicos proinflamatorios y una reducción de los fármacos antiinflamatorios, lo que contribuye a resultados desfavorables. Por lo tanto, comprender las interacciones microbianas armónicas y disarmónicas en el contexto de COVID-19 puede ayudar a desarrollar estrategias no farmacológicas capaces de modular la respuesta del huésped y evitar complicaciones, particularmente en pacientes con comorbilidades.
Citas
Abd-Elsalam, S., Esmail, E. S., Khalaf, M., Abdo, E. F., Medhat, M. A., El Ghafar, M. S. A., Ahmed, O. A., Soliman, S., Serangawy, G. N., & Alboraie, M. (2020). Hydroxychloroquine in the treatment of COVID-19: A multicenter randomized controlled study. American Journal of Tropical Medicine and Hygiene, 103(4), 1635–1639. https://doi.org/10.4269/ajtmh.20-0873
Abelenda-Alonso, G., Padullés, A., Rombauts, A., Gudiol, C., Pujol, M., Alvarez-Pouso, C., Jodar, R., & Carratalà, J. (2020). Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infection Control and Hospital Epidemiology, 41(11), 1371–1372. https://doi.org/10.1017/ice.2020.381
Abreu, J. A. C. de, & Silva, F. B. A. (2021). A double-edged sword : bacterias & Covid-19. Brazilian Journal of Development, 7(5), 53750–53769. https://doi.org/10.34117/bjdv7n5-670
Adeiza, S. S., Shuaibu Bello, A., & Shuaibu, M. G. (2020). Random Effects Meta-Analysis of COVID-19/S. Aureus Partnership in Co-Infection. SSRN Electronic Journal, 15, 1–10. https://doi.org/10.2139/ssrn.3724705
Agência Nacional de Vigilância Sanitária. (2021a). Anvisa aprova o uso emergencial de mais uma associação de anticorpos contra o novo coronavírus. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/anvisa-aprova-o-uso-emergencial-de-mais-uma-associacao-de-anticorpos-contra-o-novo-coronavirus
Agência Nacional de Vigilância Sanitária. (2021b). Anvisa aprova registro da vacina da Fiocruz/AstraZeneca e de medicamento contra o coronavírus. Agência Nacional de Vigilância Sanitária. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/anvisa-aprova-registro-da-vacina-da-fiocruz-astrazeneca-e-de-medicamento-contra-o-coronavirus
Agência Nacional de Vigilância Sanitária. (2021c). Aprovado uso emergencial de anticorpos para tratamento de COVID-19. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/aprovado-uso-emergencial-de-anticorpos-para-tratamento-de-covid-19
Ahmed, S., Karim, M. M., Ross, A. G., Hossain, M. S., Clemens, J. D., Sumiya, M. K., Phru, C. S., Rahman, M., Zaman, K., Somani, J., Yasmin, R., Hasnat, M. A., Kabir, A., Aziz, A. B., & Khan, W. A. (2021). A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. International Journal of Infectious Diseases, 103, 214–216. https://doi.org/10.1016/j.ijid.2020.11.191
Aktas, B., & Aslim, B. (2020). Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology, 44(Special issue 1), 265–272. https://doi.org/10.3906/biy-2005-102
Aleksandrova, K., Romero-Mosquera, B., & Hernandez, V. (2017). Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients, 9(9), 1–13. https://doi.org/10.3390/nu9090962
Andreani, J., Le, M., Du, I., Jardot, P., & Rolland, C. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS- CoV-2 shows synergistic effec. Microbial Pathogenesis, 145. https://doi.org/doi.org/10.1016/j.micpath.2020.104228
Araújo, L. O., Freitas, P. J. F. de, Abreu, J. A. C. de, Freitas, N. L. de, & Brandão, F. (2021). Coinfecção Com Staphylococcus Aureus Como Agravante Da Covid-19. Revista Unimontes Científica, 23(1), 1–20. https://doi.org/10.46551/ruc.v23n1a03
Arhcer, D. L., & Kramer, D. C. (2020). The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrates as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.00292
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/nejmoa2035389
Baghbani, T., Nikzad, H., Azadbakht, J., Izadpanah, F., & Haddad Kashani, H. (2020). Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microbial Cell Factories, 19(1), 1–25. https://doi.org/10.1186/s12934-020-01483-1
Barko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32(1), 9–25. https://doi.org/10.1111/jvim.14875
Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., Freeman, C. M., Schmidt, T. M., Young, V. B., Beck, J. M., Curtis, J. L., & Huffnagle, G. B. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio, 6(2), 1–10. https://doi.org/10.1128/mBio.00037-15
Baud, D., Dimopoulou Agri, V., Gibson, G. R., Reid, G., & Giannoni, E. (2020). Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Frontiers in Public Health, 8(May), 1–5. https://doi.org/10.3389/fpubh.2020.00186
Beck, J. M. (2014). ABCs of the lung microbiome. Annals of the American Thoracic Society, 11(SUPPL. 1), 5–8. https://doi.org/10.1513/AnnalsATS.201306-188MG
Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/nejmoa2007764
Belkaid, Y., & Harrison, O. J. (2017). Homeostatic Immunity and the Microbiota. Immunity, 46(4), 562–576. https://doi.org/10.1016/j.immuni.2017.04.008
Bhat, M. I., & Kapila, R. (2017). Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutrition Reviews, 75(5), 374–389. https://doi.org/10.1093/nutrit/nux001
Blaser, M. J. (2014). Missing Microbes : How the Overuse of Antibiotics Is Fueling Our Modern Plagues. Henry Holt and Company.
Bolduc, J.-F., Hany, L., Barat, C., Ouellet, M., & Tremblay, M. J. (2017). Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4 + T Cells. Journal of Virology, 91(16). https://doi.org/10.1128/jvi.01943-16
Borba, M. G. S., Val, F. F. A., Sampaio, V. S., Alexandre, M. A. A., Melo, G. C., Brito, M., Mourão, M. P. G., Brito-Sousa, J. D., Baía-da-Silva, D., Guerra, M. V. F., Hajjar, L. A., Pinto, R. C., Balieiro, A. A. S., Pacheco, A. G. F., Santos, J. D. O., Naveca, F. G., Xavier, M. S., Siqueira, A. M., Schwarzbold, A., & Lacerda, M. V. G. (2020). Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Network Open, 3(4), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857
Borges, F. M., Paula, T. O. de, Gameiro, J., Silva, V. L. da, & Diniz, C. G. (2014). O papel da microbiota na modulação da homeostase dos hospedeiros: correlação entre micobioma intestinal e obesidade. HU Revista, 40(1 e 2), 107–116. https://periodicos.ufjf.br/index.php/hurevista/article/view/2452/932
Bottari, B., Castellone, V., & Neviani, E. (2020). Probiotics and Covid-19. International Journal of Food Sciences and Nutrition, 0(0), 1–7. https://doi.org/10.1080/09637486.2020.1807475
Brandão, F., Esher, S. K., Ost, K. S., Pianalto, K., Nichols, C. B., Fernandes, L., Bocca, A. L., Poças-Fonseca, M. J., & Alspaugh, J. A. (2018). HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-21965-y
Bultman, S. J. (2017). Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 61(1), 1–12. https://doi.org/10.1002/mnfr.201500902
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178(March), 3–6. https://doi.org/10.1016/j.antiviral.2020.104787
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/nejmoa2001282
Cao, T., Zhang, X., Chen, D., Zhang, P., Li, Q., & Muhammad, A. (2018). The epigenetic modification during the induction of Foxp3 with sodium butyrate. Immunopharmacology and Immunotoxicology, 40(4), 309–318. https://doi.org/10.1080/08923973.2018.1480631
Carfi, A., Bernabei, R., & Landi, F. (2020). Persistent Symptoms in Patients After Acute COVID-19. New England Journal of Medicine, 324(6), 603–605. https://doi.org/10.1001/jama.2020.12603
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Napoli, R. Di. (2020). Features, Evaluation and Treatment Coronavirus ( COVID-19 ). In StatPearls [Internet]. StatPearls Publishing.
Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., de Barros e Silva, P. G. M., Tramujas, L., Abreu-Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., … Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041–2052. https://doi.org/10.1056/nejmoa2019014
Chaccour, C., Casellas, A., Blanco-Di Matteo, A., Pineda, I., Fernandez-Montero, A., Ruiz-Castillo, P., Richardson, M.-A., Rodríguez-Mateos, M., Jordán-Iborra, C., Brew, J., Carmona-Torre, F., Giráldez, M., Laso, E., Gabaldón-Figueira, J. C., Dobaño, C., Moncunill, G., Yuste, J. R., Del Pozo, J. L., Rabinovich, N. R., … Fernández-Alonso, M. (2021). The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine, 32, 100720. https://doi.org/10.1016/j.eclinm.2020.100720
Chen, X., Liao, B., Cheng, L., Peng, X., Xu, X., Li, Y., Hu, T., Li, J., Zhou, X., & Ren, B. (2020). The microbial coinfection in COVID-19. Applied Microbiology and Biotechnology, 104(18), 7777–7785. https://doi.org/10.1007/s00253-020-10814-6
Chlamydas, S., Papavassiliou, A. G., & Piperi, C. (2020). Epigenetic mechanisms regulating COVID-19 infection. Epigenetics, 16(3), 263–270. https://doi.org/10.1080/15592294.2020.1796896
Chunxi, L., Haiyue, L., Yanxia, L., Jianbing, P., & Jin, S. (2020). The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research. https://doi.org/10.1155/2020/2340670
Clancy, C. J., & Nguyen, M. H. (2020). COVID-19, superinfections and antimicrobial development: What can we expect? Clinical Infectious Diseases, 71(10), 2736–2743. https://doi.org/10.1093/cid/ciaa524
Coleman, O. I., & Nunes, T. (2016). Role of the Microbiota in Colorectal Cancer: Updates on Microbial Associations and Therapeutic Implications. BioResearch Open Access, 5(1), 279–288. https://doi.org/10.1089/biores.2016.0028
Costa, A. N., Costa, F. M. da, Campos, S. V., Salles, R. K., & Athanazio, R. A. (2018a). The pulmonary microbiome: Challenges of a new paradigm. Jornal Brasileiro de Pneumologia, 44(5), 424–432. https://doi.org/10.1590/s1806-37562017000000209
Costa, A. N., Costa, F. M. da, Campos, S. V., Salles, R. K., & Athanazio, R. A. (2018b). The pulmonary microbiome: Challenges of a new paradigm. Jornal Brasileiro de Pneumologia, 44(5), 424–432. https://doi.org/10.1590/s1806-37562017000000209
Costa, M. G. M., & Rocha, J. S. (2021). Modulação Da Microbiota Intestinal Como Estratégia De Resposta Imunológica À Covid-19. Revista Multidisciplinar Em Saúde, 2(2). https://doi.org/10.51161/rems/1192
De Sousa-Majer, M. J., Hardie, D. C., Turner, N. C., & Higgins, T. J. V. (2007). Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. Journal of Economic Entomology, 100(4), 1416–1422. https://doi.org/10.1603/0022-0493(2007)100[1416:BAIITP]2.0.CO;2
Demehri, F. R., Barrett, M., Ralls, M. W., Miyasaka, E. A., Feng, Y., & Teitelbaum, D. H. (2013). Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Frontiers in Cellular and Infection Microbiology, 3(DEC), 1–7. https://doi.org/10.3389/fcimb.2013.00105
Deriu, E., Boxx, G. M., He, X., Pan, C., Benavidez, S. D., Cen, L., Rozengurt, N., Shi, W., & Cheng, G. (2016). Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathogens, 12(5), 1–26. https://doi.org/10.1371/journal.ppat.1005572
Dickson, R. P., Erb-Downward, J. R., & Huffnagle, G. B. (2015). Homeostasis and its disruption in the lung microbiome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 309(10), L1047–L1055. https://doi.org/10.1152/ajplung.00279.2015
Dogra, S. K., Doré, J., & Damak, S. (2020). Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Frontiers in Microbiology, 11(September), 2014–2021. https://doi.org/10.3389/fmicb.2020.572921
Dumas, A., Bernard, L., Poquet, Y., Lugo-Villarino, G., & Neyrolles, O. (2018). The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cellular Microbiology, 20(12), 1–9. https://doi.org/10.1111/cmi.12966
Elsayed, S., & Zhang, K. (2004). Human infection caused by Clostridium hatheawayi. Emerging Infectious Diseases, 10(11), 1950–1952. https://doi.org/10.3201/eid1011.040006
Enaud, R., Prevel, R., Ciarlo, E., Beaufils, F., Wieërs, G., Guery, B., & Delhaes, L. (2020). The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Frontiers in Cellular and Infection Microbiology, 10(February), 1–11. https://doi.org/10.3389/fcimb.2020.00009
Fadel, R., Morrison, A. R., Vahia, A., Smith, Z. R., Chaudhry, Z., Bhargava, P., Miller, J., Kenney, R. M., Alandagen, G., & Ramesh, M. S. (2020). Early Short Course Corticosteroids in Hospitalized Patients with COVID-19. Clinical Infectious Diseases, 71(16), 2114–2120. https://doi.org/10.1093/cid/ciaa601
Federal Drug Administration. (2021). Emergency Use Authorization (EUA) of Casirivimab and Imdevimab (p. 27). https://www.fda.gov/media/143892/download
Ferreira, M. V. C., Paes, V. R., & Lichtenstein, A. (2008). Penicilina : oitenta anos. Rev. Med., 87(4), 272–276. https://doi.org/10.11606/issn.1679-9836.v87i4p272-276
Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., … Yau, Y. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 396(10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4
Freitas, N. L. de, Azevedo, P. R. G., & Brandão, F. (2020). A glance upon epigenetic and COVID-19. Anais Da Academia Brasileira de Ciencias, 92(4), 1–3. https://doi.org/10.1590/0001-3765202020201451
Gagnière, J., Raisch, J., Veziant, J., Barnich, N., Bonnet, R., Buc, E., Bringer, M. A., Pezet, D., & Bonnet, M. (2016). Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 22(2), 501–518. https://doi.org/10.3748/wjg.v22.i2.501
Garcia-Vidal, C., Sanjuan, G., Moreno-García, E., Puerta-Alcalde, P., Garcia-Pouton, N., Chumbita, M., Fernandez-Pittol, M., Pitart, C., Inciarte, A., Bodro, M., Morata, L., Ambrosioni, J., Grafia, I., Meira, F., Macaya, I., Cardozo, C., Casals, C., Tellez, A., Castro, P., … Torres, A. (2021). Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27(1), 83–88. https://doi.org/10.1016/j.cmi.2020.07.041
Gautret, P., Lagier, J., Parola, P., & Hoang, V. T. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1). https://doi.org/10.1016/j.ijantimicag.2020.105949
Geremia, D. A. A., Peixe, J. B., Barreto, B. S. P., Frohlich, F., Tossatti, I. P. B., De Sene, M. R. I., Meier, L. F. S., & Feitosa, I. B. (2021). O papel do intestino na homeostase imunológica. Brazilian Journal of Development, 7(6), 55181–55191. https://doi.org/10.34117/bjdv7n6-091
Geva-Zatorsky, N., Sefik, E., Kua, L., Pasman, L., Tan, T. G., Ortiz-Lopez, A., Yanortsang, T. B., Yang, L., Jupp, R., Mathis, D., Benoist, C., & Kasper, D. L. (2017). Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 168(5), 928-943.e11. https://doi.org/10.1016/j.cell.2017.01.022
Gohil, K., Samson, R., Dastager, S., & Dharne, M. (2021). Probiotics in the prophylaxis of COVID-19: something is better than nothing. 3 Biotech, 11(1), 1–10. https://doi.org/10.1007/s13205-020-02554-1
Gomes, A. P. P. (2017). A microbiota intestinal e os desenvolvimentos recentes sobre o seu impacto na saúde e na doença [Universidade de Lisboa]. https://repositorio.ul.pt/bitstream/10451/36100/1/MICF_Ana_Patricia_Gomes.pdf
Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31. https://doi.org/10.1016/j.jmb.2004.02.006
Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C., Lu, H., Zheng, B., Zhang, J., Yan, R., Zhang, H., Jiang, H., Xu, Q., Guo, J., Gong, Y., … Li, L. (2020). Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clinical Infectious Diseases, 71(10), 2669–2678. https://doi.org/10.1093/cid/ciaa709
Guimarães, K. S. de L., Braga, V. de A., Noronha, S. I. S. R. de, Costa, W. K. A. da, Makki, K., Cruz, J. de C., Brandão, L. R., Junior, D. A. C., Meugnier, E., Leulier, F., Vidal, H., Magnani, M., & Alves, J. L. de B. (2020). Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food & Function, 11(10), 8939–8950. https://doi.org/10.1039/d0fo01718c
Han, S. K., & Kim, D. H. (2019). Lactobacillus mucosae and Bifidobacterium longum Synergistically Alleviate Immobilization Stress-Induced Anxiety/Depression in Mice by Suppressing Gut Dysbiosis. Journal of Microbiology and Biotechnology, 29(9), 1369–1374. https://doi.org/10.4014/jmb.1907.07044
Hanada, S., Pirzadeh, M., Carver, K. Y., & Deng, J. C. (2018). Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Frontiers in Immunology, 9(NOV), 1–15. https://doi.org/10.3389/fimmu.2018.02640
Hasan, S. S., Capstick, T., Ahmed, R., Kow, C. S., Mazhar, F., Merchant, H. A., & Zaidi, S. T. R. (2020). Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Review of Respiratory Medicine, 1–15. https://doi.org/10.1080/17476348.2020.1804365
Hauptmann, M., & Schaible, U. E. (2016). Linking microbiota and respiratory disease. FEBS Letters, 590(21), 3721–3738. https://doi.org/10.1002/1873-3468.12421
He, H., Xu, H., Xu, J., Zhao, H., Lin, Q., Zhou, Y., & Nie, Y. (2020). Sodium Butyrate Ameliorates Gut Microbiota Dysbiosis in Lupus-Like Mice. Frontiers in Nutrition, 7(November), 1–10. https://doi.org/10.3389/fnut.2020.604283
Hoffmann, M., Kleine-weber, H., Schroeder, S., Krüger, N., Herrier, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271–280. https://doi.org/10.1016/j.cell.2020.02.052
Hsu, J. (2020). How covid-19 is accelerating the threat of antimicrobial resistance. The BMJ, 369(May), 18–19. https://doi.org/10.1136/bmj.m1983
Huang, E. Y., Inoue, T., Leone, V. A., Dalal, S., Touw, K., Wang, Y., Musch, M. W., Theriault, B., Higuchi, K., Donovan, S., Gilbert, J., & Chang, E. B. (2015). Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflammatory Bowel Diseases, 21(5), 963–972. https://doi.org/10.1097/MIB.0000000000000332
Indrio, F., Martini, S., Francavilla, R., Corvaglia, L., Cristofori, F., Mastrolia, S. A., Neu, J., Rautava, S., Spena, G. R., Raimondi, F., & Loverro, G. (2017). Epigenetic matters: The link between early nutrition, microbiome, and long-term health development. Frontiers in Pediatrics, 5(August), 1–14. https://doi.org/10.3389/fped.2017.00178
Jang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-31764-0
Javdan, B., Lopez, J. G., Chankhamjon, P., Lee, Y. C. J., Hull, R., Wu, Q., Wang, X., Chatterjee, S., & Donia, M. S. (2020). Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell, 181(7), 1661-1679.e22. https://doi.org/10.1016/j.cell.2020.05.001
Katada, S., Imhof, A., & Sassone-Corsi, P. (2012). Connecting threads: Epigenetics and metabolism. Cell, 148(1–2), 24–28. https://doi.org/10.1016/j.cell.2012.01.001
Kennedy, M. T. (2004). A Brief History of Disease, Science and Medicine: from the Ice Age to the Genome Project. Asklepiad Press.
Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., Van Ranst, M., & Maes, P. (2009). Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial Agents and Chemotherapy, 53(8), 3416–3421. https://doi.org/10.1128/AAC.01509-08
Khan, M., Mathew, B. J., Gupta, P., Garg, G., Khadanga, S., Vyas, A. K., & Singh, A. K. (2021). Gut dysbiosis and il-21 response in patients with severe covid-19. Microorganisms, 9(6), 1–16. https://doi.org/10.3390/microorganisms9061292
Kitsios, G. D., Morowitz, M. J., Dickson, R. P., Huffnagle, G. B., Mcverry, B. J., Morris, A., & Chair, V. (2017). Dysbiosis in the ICU: Microbiome science coming to the bedside. Journal of Critical Care, 38, 84–91. https://doi.org/10.1016/j.jcrc.2016.09.029
Krautkramer, K. A., Rey, F. E., & Denu, J. M. (2017). Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? Journal of Biological Chemistry, 292(21), 8582–8593. https://doi.org/10.1074/jbc.R116.761577
Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., Krishnan, P., Kumar, A. V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D. L., Pearson, A., Perry, C., Pike, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597–602. https://doi.org/10.1016/S1473-3099(10)70143-2
Lamontagne, F., Agoritsas, T., Macdonald, H., Leo, Y., Diaz, J., Agarwal, A., Appiah, J. A., Arabi, Y., Blumberg, L., & Calfee, C. S. (2020). A living WHO guideline on drugs for covid-19. The BMJ. https://doi.org/10.1136/bmj.m3379
Landeiro, J. A. V. R. (2016). Impacto da Microbiota Intestinal na Saúde Mental [Instituto Superior de Ciências da Saúde Egas Moniz]. https://comum.rcaap.pt/bitstream/10400.26/17565/1/Landeiro_Joana_Almeida_Vilão_Raposo.pdf
Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. Journal of Infection, 81, 266–275. https://doi.org/10.2139/ssrn.3594598
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219–232. https://doi.org/10.1038/nri.2017.7
Li, J., Richards, E. M., Handberg, E. M., Pepine, C. J., & Raizada, M. K. (2021). Butyrate Regulates COVID-19-Relevant Genes in Gut Epithelial Organoids From Normotensive Rats. Hipertension, 77, e13–e17. https://doi.org/10.1161/HYPERTENSIONAHA.120.16647
Licciardi, P. V., Wong, S. S., Tang, M. L. K., & Karagiannis, T. C. (2010). Epigenome targeting by probiotic metabolites. Gut Pathogens, 2(1), 1–5. https://doi.org/10.1186/1757-4749-2-24
Liu, X., Chen, H., Shang, Y., Zhu, H., Chen, G., Chen, Y., Liu, S., Zhou, Y., Huang, M., Hong, Z., & Xia, J. (2020). Efficacy of chloroquine versus lopinavir/ritonavir in mild/general COVID-19 infection: a prospective, open-label, multicenter, randomized controlled clinical study. Trials, 21(1), 1–9. https://doi.org/10.1186/s13063-020-04478-w
Lloyd-Sherlock, P., McKee, M., Ebrahim, S., Gorman, M., Greengross, S., Prince, M., Pruchno, R., Gutman, G., Kirkwood, T., O’Neill, D., Ferrucci, L., Kritchevsky, S. B., & Vellas, B. (2012). Population ageing and health. The Lancet, 379(9823), 1295–1296. https://doi.org/10.1016/S0140-6736(12)60519-4
Logunov, D. Y., Dolzhikova, I. V, Shcheblyakov, D. V, Tukhvatulin, A. I., Zubkova, O. V, Dzharullaeva, A. S., Kovyrshina, A. V, Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V, Shcherbinin, D. N., … Gintsburg, A. L. (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet, 397(10275), 671–681. https://doi.org/10.1016/s0140-6736(21)00234-8
López-Medina, E., López, P., Hurtado, I. C., Dávalos, D. M., Ramirez, O., Martínez, E., Díazgranados, J. A., Oñate, J. M., Chavarriaga, H., Herrera, S., Parra, B., Libreros, G., Jaramillo, R., Avendaño, A. C., Toro, D. F., Torres, M., Lesmes, M. C., Rios, C. A., & Caicedo, I. (2021). Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial. Jama, 1–10. https://doi.org/10.1001/jama.2021.3071
Lopez-Santamarina, A., Lamas, A., del Carmen Mondragón, A., Cardelle-Cobas, A., Regal, P., Rodriguez-Avila, J. A., Miranda, J. M., Franco, C. M., & Cepeda, A. (2021). Probiotic Effects against Virus Infections: New Weapons for an Old War. Foods, 10(1). https://doi.org/10.3390/foods10010130
Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T., & Ramalheira, E. (2016). O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de Saude Publica, 34(1), 77–84. https://doi.org/10.1016/j.rpsp.2015.11.003
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Magalhães, N. S., Savino, W., Silva, P. M. R., Martins, M. A., & Carvalho, V. F. (2021). Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Frontiers in Medicine, 8(May), 1–11. https://doi.org/10.3389/fmed.2021.644751
Mahmoudi, H. (2020). Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hygiene and Infection Control, 15, Doc35. https://doi.org/10.3205/dgkh000370
Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L., & Gordon, J. I. (2009). Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5859–5864. https://doi.org/10.1073/pnas.0901529106
Malcolm, W., Seaton, R. A., Haddock, G., Baxter, L., Thirlwell, S., Russell, P., Cooper, L., Thomson, A., & Sneddon, J. (2020). Impact of the COVID-19 pandemic on community antibiotic prescribing in Scotland. JAC-Antimicrobial Resistance, 2(4), 1–4. https://doi.org/10.1093/jacamr/dlaa105
Marsland, B. J., & Gollwitzer, E. S. (2014). Host-microorganism interactions in lung diseases. Nature Reviews Immunology, 14(12), 827–835. https://doi.org/10.1038/nri3769
Martin, M. O. (2013). Overuse of Antibiotics: A Voice (with Multiple Agendas) Crying Out in the Microbial Wilderness. Journal of Microbiology & Biology Education, 15(2), 337–338. https://doi.org/10.1128/jmbe.v15i2.793
Mathew, O. P., Ranganna, K., & Milton, S. G. (2014). Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals, 7(11), 1008–1027. https://doi.org/10.3390/ph7111008
McKenney, P. T., & Pamer, E. G. (2015). From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 163(6), 1326–1332. https://doi.org/10.1016/j.cell.2015.11.032
Miro-Blanch, J., & Yanes, O. (2019). Epigenetic regulation at the interplay between gut microbiota and host metabolism. Frontiers in Genetics, 10(JUL), 1–9. https://doi.org/10.3389/fgene.2019.00638
Mirzaei, R., Attar, A., Papizadeh, S., Jeda, A. S., Hosseini-Fard, S. R., Jamasbi, E., Kazemi, S., Amerkani, S., Talei, G. R., Moradi, P., Jalalifar, S., Yousefimashouf, R., Hossain, M. A., Keyvani, H., & Karampoor, S. (2021). The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Archives of Virology, Mar 20, 1–22. https://doi.org/10.1007/s00705-021-05036-8
Moraes, A. C. F. de, Silva, I. T. da, Almeida-Pititto, B. de, & Ferreira, S. R. G. (2014). Microbiota intestinal e risco cardiometabólico: Mecanismos e modulação dietética. Arquivos Brasileiros de Endocrinologia e Metabologia, 58(4), 317–327. https://doi.org/10.1590/0004-2730000002940
Morowitz, M. J., Carlisle, E., & Alverdy, J. C. (2012). Contributions of Intestinal Bacteria to Nutrition and Metabolism in the Critically Ill. Surgical Clinics of North Amer, 91(4), 771–785. https://doi.org/10.1016/j.suc.2011.05.001
Newell, P. D., & Douglas, A. E. (2014). Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster. Applied and Environmental Microbiology, 80(2), 788–796. https://doi.org/10.1128/AEM.02742-13
Nibali, L., & Brian, H. (2016). The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology (L. Nibali & H. Brian (eds.)). Wiley Blackwell. https://doi.org/10.1002/9781118982907.ch3
Nori, P., Cowman, K., Chen, V., Bartash, R., Szymczak, W., Madaline, T., Punjabi Katiyar, C., Jain, R., Aldrich, M., Weston, G., Gialanella, P., Corpuz, M., Gendlina, I., & Guo, Y. (2021). Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infection Control and Hospital Epidemiology, 42(1), 84–88. https://doi.org/10.1017/ice.2020.368
Opoku-Acheampong, I., McLaud, T., & Anderson, O. S. (2021). Fecal Microbiota Transplantation to Prevent and Treat Chronic Disease: Implications for Dietetics Practice. Journal of the Academy of Nutrition and Dietetics. https://doi.org/10.1016/j.jand.2021.08.112
Patra, S., Saxena, S., Sahu, N., Pradhan, B., & Roychowdhury, A. (2021). Systematic Network and Meta-analysis on the Antiviral Mechanisms of Probiotics: A Preventive and Treatment Strategy to Mitigate SARS-CoV-2 Infection. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-021-09748-w
Peleg, S., Feller, C., Ladurner, A. G., & Imhof, A. (2016). The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends in Biochemical Sciences, 41(8), 700–711. https://doi.org/10.1016/j.tibs.2016.05.008
Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 279(1), 70–89. https://doi.org/10.1111/imr.12567
Pinto, C. T. (2016). Homeostase da microbiota intestinal : saúde ou doença no homem [Universidade de Coimbra]. https://estudogeral.sib.uc.pt/handle/10316/40869
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/nejmoa2034577
Pruimboom, L. (2020). Methylation Pathways and SARS-CoV-2 Lung Infiltration and Cell Membrane-Virus Fusion Are Both Subject to Epigenetics. Frontiers in Cellular and Infection Microbiology, 10(May), 1–5. https://doi.org/10.3389/fcimb.2020.00290
Ranganna, K., Yousefipour, Z., Yatsu, F. M., Milton, S. G., & Hayes, B. E. (2003). Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation. Molecular and Cellular Biochemistry, 254(1–2), 21–36. https://doi.org/10.1023/A:1027383710582
Rawson, T. M., Ming, D., Ahmad, R., Moore, L. S. P., & Holmes, A. H. (2020). Antimicrobial use, drug-resistant infections and COVID-19. Nature Reviews. Microbiology, 18(8), 409–410. https://doi.org/10.1038/s41579-020-0395-y
Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 71(9), 2459–2468. https://doi.org/10.1093/cid/ciaa530
Remely, M., Aumueller, E., Jahn, D., Hippe, B., Brath, H., & Haslberger, A. G. (2014). Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes, 5(1), 33–43. https://doi.org/10.3920/BM2013.006
Reuben, R. C., Makut, M. D., & Adogo, L. Y. (2021). Probiotics potentials in mitigating coronavirus disease (COVID-19) pandemic. Pan African Medical Journal, 38(186). https://doi.org/10.11604/pamj.2021.38.186.27953
Ringel, A. E., Tucker, S. A., & Haigis, M. C. (2018). Chemical and Physiological Features of Mitochondrial Acylation. Molecular Cell, 72(4), 610–624. https://doi.org/10.1016/j.molcel.2018.10.023
Rogers, G. B., Shaw, D., Marsh, R. L., Carroll, M. P., Serisier, D. J., & Bruce, K. D. (2015). Respiratory microbiota: Addressing clinical questions, informing clinical practice. Thorax, 70(1), 74–81. https://doi.org/10.1136/thoraxjnl-2014-205826
Romano, K. A., Martinez-del Campo, A., Kasahara, K., Chittim, C. L., Vivas, E. I., Amador-Noguez, D., Balskus, E. P., & Rey, F. E. (2017). Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host and Microbe, 22(3), 279-290.e7. https://doi.org/10.1016/j.chom.2017.07.021
Sadeghi, A., Asgari, A. A., Norouzi, A., Kheiri, Z., Anushirvani, A., Montazeri, M., Hosamirudsai, H., Afhami, S., Akbarpour, E., Aliannejad, R., Radmard, A. R., Davarpanah, A. H., Levi, J., Wentzel, H., Qavi, A., Garratt, A., Simmons, B., Hill, A., & Merat, S. (2020). Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): A randomized controlled trial. Journal of Antimicrobial Chemotherapy, 75(11), 3379–3385. https://doi.org/10.1093/jac/dkaa334
Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., Berghmans, P.-J., Kimmel, M., Van Damme, P., de Hoon, J., Smith, W., Stephenson, K. E., De Rosa, S. C., Cohen, K. W., McElrath, M. J., … Schuitemaker, H. (2021). Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. New England Journal of Medicine, 1–12. https://doi.org/10.1056/nejmoa2034201
Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018
Sawalha, A. H., Zhao, M., Coit, P., & Lu, Q. (2020). Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clinical Immunology, 215, 1–4. https://doi.org/10.1016/j.clim.2020.108410
Schimidt, D. B. (2017). Pressão seletiva antimicrobiana e a expressão da resistência à oxacilina em Staphylococcus aureus [Universidade Federal Fluminense]. https://app.uff.br/riuff/handle/1/6139#:~:text=nativas de S.-,aureus foram associadas às mudanças relacionadas às demais amostras.,sobre indivíduos colonizados por S.
Selarka, L., Sharma, S., Saini, D., Sharma, S., Batra, A., Waghmare, V. T., Dileep, P., Patel, S., Shah, M., Parikh, T., Darji, P., Patel, A., Goswami, G., Shah, A., Shah, S., Lathiya, H., Shah, M., Sharma, P., Chopra, S., … Ong, J. J. Y. (2021). Mucormycosis and COVID-19: An epidemic within a pandemic in India. Mycoses, 64(10), 1253–1260. https://doi.org/10.1111/myc.13353
Self, W. H., Semler, M. W., Leither, L. M., Casey, J. D., Angus, D. C., Brower, R. G., Chang, S. Y., Collins, S. P., Eppensteiner, J. C., Filbin, M. R., Files, D. C., Gibbs, K. W., Ginde, A. A., Gong, M. N., Harrell, F. E., Hayden, D. L., Hough, C. L., Johnson, N. J., Khan, A., … Brown, S. M. (2020). Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients with COVID-19: A Randomized Clinical Trial. JAMA - Journal of the American Medical Association, 324(21), 2165–2176. https://doi.org/10.1001/jama.2020.22240
Sencio, V., Barthelemy, A., Tavares, L. P., Machado, M. G., Soulard, D., Cuinat, C., Queiroz-Junior, C. M., Noordine, M. L., Salomé-Desnoulez, S., Deryuter, L., Foligné, B., Wahl, C., Frisch, B., Vieira, A. T., Paget, C., Milligan, G., Ulven, T., Wolowczuk, I., Faveeuw, C., … Trottein, F. (2020). Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Reports, 30(9), 2934-2947.e6. https://doi.org/10.1016/j.celrep.2020.02.013
Senghor, B., Sokhna, C., Ruimy, R., & Lagier, J. C. (2018). Gut microbiota diversity according to dietary habits and geographical provenance. Human Microbiome Journal, 7–8(December 2017), 1–9. https://doi.org/10.1016/j.humic.2018.01.001
Shahbazi, R., Yasavoli-Sharahi, H., Alsadi, N., Ismail, N., & Matar, C. (2020). Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules (Basel, Switzerland), 25(21), 1–20. https://doi.org/10.3390/molecules25214891
Shen, X. J., Rawls, J. F., Randall, T., Burcal, L., Mpande, C. N., Jenkins, N., Jovov, B., Abdo, Z., Sandler, R. S., & Keku, T. O. (2010). Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes, 1(3), 138–147. https://doi.org/10.4161/gmic.1.3.12360
Silva, M. O. da, & Aquino, S. (2018). Resistência aos antimicrobianos: uma revisão dos desafios na busca por novas alternativas de tratamento. Revista de Epidemiologia e Controle de Infecção, 8(4), 472–482. https://doi.org/10.17058/reci.v8i4.11580
Silva, L. G., Ferguson, B. S., Avila, A. S., & Faciola, A. P. (2018). Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. Journal of Animal Science, 96(12), 5244–5252. https://doi.org/10.1093/jas/sky373
Singh, K., & Rao, A. (2021). Probiotics: A potential immunomodulator in COVID-19 infection management. Nutrition Research, 87, 1–12. https://doi.org/10.1016/j.nutres.2020.12.014
Skonieczna-żydecka, K., Grochans, E., Maciejewska, D., Szkup, M., Schneider-Matyka, D., Jurczak, A., Łoniewski, I., Kaczmarczyk, M., Marlicz, W., Czerwińska-Rogowska, M., Pełka-Wysiecka, J., Dec, K., & Stachowska, E. (2018). Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 10(12), 1–14. https://doi.org/10.3390/nu10121939
Spinner, C. D., Gottlieb, R. L., Criner, G. J., Arribas López, J. R., Cattelan, A. M., Soriano Viladomiu, A., Ogbuagu, O., Malhotra, P., Mullane, K. M., Castagna, A., Chai, L. Y. A., Roestenberg, M., Tsang, O. T. Y., Bernasconi, E., Le Turnier, P., Chang, S. C., Sengupta, D., Hyland, R. H., Osinusi, A. O., … Marty, F. M. (2020). Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA - Journal of the American Medical Association, 324(11), 1048–1057. https://doi.org/10.1001/jama.2020.16349
Stokholm, J., Blaser, M. J., Thorsen, J., Rasmussen, M. A., Waage, J., Vinding, R. K., Schoos, A. M. M., Kunøe, A., Fink, N. R., Chawes, B. L., Bønnelykke, K., Brejnrod, A. D., Mortensen, M. S., Al-Soud, W. A., Sørensen, S. J., & Bisgaard, H. (2018). Maturation of the gut microbiome and risk of asthma in childhood. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-017-02573-2
Tang, L., Gu, S., Gong, Y., Li, B., Lu, H., Li, Q., Zhang, R., Gao, X., Wu, Z., Zhang, J., Zhang, Y., & Li, L. (2020). Clinical significance of the the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering, 6, 1178–1184. https://doi.org/doi.org/10.1016/j.eng.2020.05.013
Terova, G., Díaz, N., Rimoldi, S., Ceccotti, C., Gliozheni, E., & Piferrer, F. (2016). Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in European Sea Bass (Dicentrarchus Labrax) fed a plant-based diet. PLoS ONE, 11(7), 1–20. https://doi.org/10.1371/journal.pone.0160332
The RECOVERY Collaborative Group. (2020). Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. New England Journal of Medicine, 384(8), 693–704. https://doi.org/10.1056/nejmoa2021436
Thibeault, C., Suttorp, N., & Opitz, B. (2021). The microbiota in pneumonia: From protection to predisposition. Science Translational Medicine, 13(576), 33441423. https://doi.org/10.1126/scitranslmed.aba0501
Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510
Tidjani Alou, M., Lagier, J. C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/j.humic.2016.09.001
Tomazini, B. M., Maia, I. S., Cavalcanti, A. B., Berwanger, O., Rosa, R. G., Veiga, V. C., Avezum, A., Lopes, R. D., Bueno, F. R., Silva, M. V. A. O., Baldassare, F. P., Costa, E. L. V., Moura, R. A. B., Honorato, M. O., Costa, A. N., Damiani, L. P., Lisboa, T., Kawano-Dourado, L., Zampieri, F. G., … Azevedo, L. C. P. (2020). Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. Journal of the American Medical Association, 324(13), 1307–1316. https://doi.org/10.1001/jama.2020.17021
Trindade, G. G., Caxito, S. M. C., Xavier, A. R. E. O., Xavier, M. A. S., & Brandão, F. (2020). COVID-19: Therapeutic approaches description and discussion. Anais Da Academia Brasileira de Ciencias, 92(2), 1–15. https://doi.org/10.1590/0001-3765202020200466
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414
Udwadia, Z. F., Singh, P., Barkate, H., & Patil, S. (2020). Efficacy and safety of favipiravir , an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19 : A randomized, comparative, open-label, multicenter, phase 3 clinical trial. International Journa of Infectious Diseases, 103, 62–71. https://doi.org/10.1016/j.ijid.2020.11.142
Vallejos, J., Zoni, R., Bangher, M., Villamandos, S., Bobadilla, A., Plano, F., Campias, C., Chaparro Campias, E., Achinelli, F., Guglielmone, H. A., Ojeda, J., Medina, F., Farizano Salazar, D., Andino, G., Ruiz Diaz, N. E., Kawerin, P., Meza, E., Dellamea, S., Aquino, A., … Aguirre, M. G. (2020). Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19): a structured summary of a study protocol for a randomized controlled trial. Trials, 21(1), 10–13. https://doi.org/10.1186/s13063-020-04813-1
Villar, J., Añón, J. M., Ferrando, C., Aguilar, G., Muñoz, T., Ferreres, J., Ambrós, A., Aldecoa, C., Suárez-Sipmann, F., Thorpe, K. E., Jüni, P., Slutsky, A. S., Ferrando, C., Mellado-Artigas, R., Fernández, J., Hernández, M., Castellá, M., Castro, P., Badia, J. R., … Juando-Prats, C. (2020). Efficacy of dexamethasone treatment for patients with the acute respiratory distress syndrome caused by COVID-19: Study protocol for a randomized controlled superiority trial. Trials, 21(717). https://doi.org/10.1186/s13063-020-04643-1
Vouloumanou, E. K., Makris, G. C., Karageorgopoulos, D. E., & Falagas, M. E. (2009). Probiotics for the prevention of respiratory tract infections: a systematic review. International Journal of Antimicrobial Agents, 34(3), 197.e1-197.e10. https://doi.org/10.1016/j.ijantimicag.2008.11.005
Wang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450
Wang, Y., Zhang, D., Du, G., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Meli, C., Wang, Y., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-biind, placebo-controlled, multicentre trial. The Lancet, 395, 1569–1578. https://doi.org/10.1016/ S0140-6736(20)31022-9
Wang, Y., Zhou, F., Zhang, D., Zhao, J., Du, R., Hu, Y., Cheng, Z., Gao, L., Jin, Y., Luo, G., Fu, S., Lu, Q., Du, G., Wang, K., Lu, Y., & Fan, G. (2020). Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19 : study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial. Trials, 21(244), 1–11. https://doi.org/10.1186/s13063-020-04352-9
Weiss, G. A., & Hennet, T. (2017). Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Journal of American Medical Association, 324(8), 782–793. https://doi.org/10.1001/jama.2020.12839
World Health Organization. (2020). World Antimicrobial Awareness Week 2020 - Handle with care: United to preserve antimicrobials. https://www.who.int/news-room/events/detail/2020/11/18/default-calendar/world-antimicrobial-awareness-week-2020
World Health Organization. (2021). Call to Action on Antimicrobial Resistance 2021. https://www.who.int/news/item/30-07-2021-call-to-action-on-antimicrobial-resistance-2021
Xu, R., Wu, B., Liang, J., He, F., Gu, W., Li, K., Luo, Y., Chen, J., Gao, Y., Wu, Z., Wang, Y., Zhou, W., & Wang, M. (2020). Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain, Behavior, and Immunity, 85, 120–127. https://doi.org/10.1016/j.bbi.2019.06.039
Yang, T., Chakraborty, S., Saha, P., Mell, B., Cheng, X., Yeo, J. Y., Mei, X., Zhou, G., Mandal, J., Golonka, R., Yeoh, B. S., Putluri, V., Piyarathna, D. W. B., Putluri, N., McCarthy, C. G., Wenceslau, C. F., Sreekumar, A., Gewirtz, A. T., Vijay-Kumar, M., & Joe, B. (2020). Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity. Hypertension, 76(1), 1–3. https://doi.org/10.1161/HYPERTENSIONAHA.120.15360
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., & Liu, D. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237
Yeoh, Y. K., Zuo, T., Lui, G. C. Y., Zhang, F., Liu, Q., Li, A. Y. L., Chung, A. C. K., Cheung, C. P., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chow, K. M., Ng, S. S. S., Li, T. C. M., Ng, R. W. Y., Yip, T. C. F., … Ng, S. C. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut Microbiota, 70(4), 698–706. https://doi.org/10.1136/gutjnl-2020-323020
Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P., & Wu, Z. (2017). Interactions between Intestinal microbiota and host immune response in inflammatory bowel disease. Frontiers in Immunology, 8(AUG), 1–13. https://doi.org/10.3389/fimmu.2017.00942
Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q., & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181–192. https://doi.org/10.1016/S1473-3099(20)30843-4
Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3
Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., & Ng, S. C. (2020). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Joel Antonio Cordeiro de Abreu; Natália Lopes de Freitas; Pedro Ricardo G Azevedo; Fabiana Brandão
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.