Evaluación del rendimiento y calibración de sensores de humedad de bajo costo a múltiples profundidades de Oxisol
DOI:
https://doi.org/10.33448/rsd-v11i4.27420Palabras clave:
Función de calibración; Sensores electromagnéticos; Sensor HFM2030; Contenido de humedad del suelo; Contenido volumétrico de agua.Resumen
El control de la humedad del suelo es un componente clave en la gestión del riego y se puede llevar a cabo con la ayuda de sensores electromagnéticos de bajo costo. Este estudio tuvo como objetivo desarrollar ecuaciones de calibración para el sensor HFM2030 a diferentes profundidades (0-20; 20-40; 40-60; 60-80; 100 cm) de Oxisoles y evaluar los niveles de precisión de las ecuaciones de calibración utilizadas en el monitoreo continuo. de la humedad del suelo. Los valores de referencia del contenido de humedad del suelo se midieron mediante un método gravimétrico estándar, se convirtieron en humedad volumétrica y luego se compararon con las lecturas del sensor para desarrollar ecuaciones de calibración. El ajuste de la función de regresión se evaluó con base en el coeficiente de determinación (R2). Los resultados indicaron que las ecuaciones de calibración eran lineales a diferentes profundidades del suelo. La calibración del sensor HFM2030 mejoró la estimación del contenido volumétrico de agua en 31,21%, 23,46%, 24,93%, 31,93% y 41,18% en las capas de 0-20, 20-40, 40-60, 60-80 y 80-100 cm, respectivamente. Aquí, se demuestra que la correcta calibración del HFM2030 debe preceder a la instalación y uso de estos sensores en el campo. Los resultados de este estudio representan un paso más hacia el desarrollo de criterios que apuntan a una mayor precisión en el uso de sensores en la gestión del riego. Las ecuaciones de calibración desarrolladas en este estudio pueden ser aplicables y útiles para agricultores e investigadores que trabajan con sensores HFM2030 en condiciones de suelo similares en otras regiones de Brasil y a nivel mundial.
Citas
Allen, R. G. A. (1986). Penman for all seasons. Journal of Irrigation and Drainage Engineering, v. 112, n. 4, p. 348-386.
Ankenbauer, K. J. & Loheide, S. P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrological Processes, 31(4), 891901.
Azizan, F. A., Zalani, F. M., Nagarajan, A., Aznan, A. A. & Ruslan, R. (2019). Analysis of spatial distribution of soil moisture content for different soil layers in mango greenhouse. In IOP Conference Series: Materials Science and Engineering, 557(1), p.012070. IOP Publishing.
Bello, Z.A., Tfwala, C.M. & Van Rensburg, L.D. (2019). Evaluation of newly developed capacitance probes for continuous soil water measurement. Geoderma, 345, 104113.
Bittelli, M. (2011). Measuring soil water content: A review. HortTechnology, 21(3), 293300.
Bogena, H.R., Huisman, J.A., Schilling, B., Weuthen, A. & Vereecken, H. (2017). Effective calibration of low-cost soil water content sensors. Sensors, 17(1), 208.
Camargo, A.P. & Sentelhas, P.C. (1997). Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo. Revista Brasileira de Agrometeorologia, Santa Maria, v.5, n.1, p.89-97.
Cardenas-Lailhacar, B. & Dukes, M.D. (2015). Effect of temperature and salinity on the precision and accuracy of landscape irrigation soil moisture sensor systems. Journal of Irrigation and Drainage Engineering, 141(7), 04014076.
Chen, B., Han, M.Y., Peng, K., Zhou, S.L., Shao, L., Wu, X.F. & Chen, G.Q. (2018). Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Science of the Total Environment, 613, 931943.
Dobriyal, P., Qureshi, A., Badola, R. & Hussain, S.A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110117.
Evett, S.R., Schwartz, R.C., Casanova, J.J. & Heng, L.K. (2012). Soil water sensing for water balance, ET and WUE. Agricultural Water Management, 104, 19.
Falker. (2018). Manual do medidor eletrônico de umidade do solo HFM2030 HFM 2030. 43p.
Fares, A., Awal, R. & Bayabil, H.K. (2016). Soil water content sensor response to organic matter content under laboratory conditions. Sensors, 16(8), 1239.
Fares, A., Buss, P., Dalton, M., El‐Kadi, A.I. & Parsons, L.R. (2004). Dual field calibration of capacitance and neutron soil water sensors in a shrinking–swelling clay soil. Vadose Zone Journal, 3(4), 13901399.
Ferrarezi, R.S., Dove, S.K., Van Iersel, M.W. (2015). An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. HortTechnology, 25(1), 110118.
Gabriel, J.L., Lizaso, J.I. & Quemada, M. (2010). Laboratory versus field calibration of capacitance probes. Soil Science Society of America Journal, 74(2), 593601.
Gava, R., da Silva, E.E. & Baio, F. (2016). Electronic Moisture Sensor Calibration In Different Soil Textures. Revista Brasileira De Engenharia De Biossistemas, 10(2), 154–162.
Geesing, D., Bachmaier, M. & Schmidhalter, U. (2004). Field calibration of a capacitance soil water probe in heterogeneous fields. Soil Research, 42(3), 289-299.
Hajdu, I., Yule, I., Bretherton, M., Singh, R. & Hedley, C. (2019). Field performance assessment and calibration of multi-depth AquaCheck capacitance-based soil moisture probes under permanent pasture for hill country soils. Agricultural water management, 217, 332345.
Hanson, B., Orloff, S. & Peters, D. (2000). Monitoring soil moisture helps refine irrigation management. California Agriculture, 54(3), 3842.
Hedley, C. B., Yule, I. J. & Bradbury S. (2010). Analysis of potential benefits of precision irrigation for variable soils at five pastoral and arable production sites in New Zealand. In: 19th World Soil Congress, pp 16.
Kinzli, K. D., Manana, N. & Oad, R. (2012). Comparison of laboratory and field calibration of a soil-moisture capacitance probe for various soils. Journal of irrigation and drainage engineering, 138(4), 310321.
Kramer, P .J. & Boyer, J. S. (1995). Soil and water. In: Water Relations of Plants and Soils; Academic Press: San Diego, CA, USA, 84–114.
Lima, H. V. D., Silva, Á. P. D, Giarola, N. F. B. & Imhoff, S. (2014). Índice de qualidade física do solo de solos de endurecimento no litoral brasileiro. Revista Brasileira de Ciência do Solo, 38 (6), 1722-1730.
Lukanu G. & Savage M. J (2006). Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil. Water SA, 32, 37.
Moradkhani, H. (2008). Hydrologic remote sensing and land surface data assimilation. Sensors, 8(5), 2986-3004.
Muggler, C. C., Buurman, P. & Van Doesburg, J. D. (2007). Weathering trends and parent material characteristics of polygenetic Oxisols from Minas Gerais, Brazil: I. Mineralogy. Geoderma, 138(1-2), 39-48.
Nagahage, E. A. A. D., Nagahage, I. S. P. & Fujino, T. (2019). Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture, 9(7), 141.
Ni-Meister, W. (2008). Recent advances on soil moisture data assimilation. Physical Geography, 29(1), 19-37.
North, G. B. & Nobel, P.S. (1991). Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae). American Journal of Botany, 78(7), 906915.
Parvin, N. & Degré, A. (2016). Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Research, 54(1), 111119.
Peters R. T., Desta, K. G. & Nelson, L. (2013). Practical use of soil moisture sensors and their data for irrigation scheduling. Washington State University Extension Fact Sheet S083E. http://hdl.handle.net/2376/4389.
Polyakov, V., Fares, A. & Ryder, M.H. (2005). Calibration of a capacitance system for measuring water content of tropical soil. Vadose Zone Journal, 4(4), 1004-1010.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Seneviratne, S. I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Science Reviews, 99(34), 125161.
Sui, R. (2017). Irrigation scheduling using soil moisture sensors. Journal of Agricultural Science, 10(1), 111.
Van Genuchten, M. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vaz, C. M., Jones, S., Meding M. & Tuller, M. (2013). Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal, 12(2).
Vera, J., Conejero, W., Conesa, M. R. & Ruiz-Sánchez, M. C. (2019). Irrigation factor approach based on soil water content: a nectarine orchard case study. Water, 11(3), 589.
Wang, S., Fu, B. J., Gao, G. Y., Yao, X. L. & Zhou, J. (2012). Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrology and Earth System Sciences, 16(8), 28832892.
Wang, X.D. & Benson, C.H. (2004). Leak‐free pressure plate extractor for measuring the soil water characteristic curve. Geotechnical Testing Journal, 27(2), 163–172.
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J. & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005.
Woodward, S. J. R., Barker, D. J. & Zyskowski, R. F. (2001). A practical model for predicting soil water deficit in New Zealand pastures. New Zealand Journal of Agricultural Research, 44(1), 91109.
Zazueta, F. S. & Xin, J. (1994). Soil Moisture Sensors; Florida Cooperative Extension Service, Institute of Food and Agricultural Science; University of Florida: Gainesville, FL, USA.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ednângelo Duarte Pereira; Manoel Nelson de Castro Filho; Denizard Allison Santos Bueno; Rolando Ismael Corella Caballero; Rafael Ravanelli Chagas; Ronaldo Silva Gomes; Derly José Henriques da Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.