Rutas tecnológicas de High Analytics Information: un análisis de red de patentes

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27569

Palabras clave:

Tecnologías de la información; Rutas tecnológicas; Análisis de redes sociales; Análisis de patentes; High analytics information.

Resumen

El conocimiento intensivo contribuye significativamente al desarrollo tecnológico. Este artículo tiene como objetivo explorar las vías tecnológicas (TR) en tecnologías de high analytics information (HAI) con fines de pronóstico tecnológico a través del análisis de redes sociales (SNA) en una base de datos de patentes de 2001 a 2020. Aplicando el recuento de enlaces de ruta de algoritmo (SPLC), este estudio proporciona cinco TR diferentes en diferentes sectores comerciales. Este estudio ayuda a los tomadores de decisiones a encontrar núcleos tecnológicos adicionales para sus estrategias de innovación y ayuda a los investigadores a identificar tecnologías HAI que aún pueden surgir en diferentes industrias, apoyando decisiones estratégicas de I+D sobre cómo priorizar inversiones, identificar asociaciones para innovar y colaborar en políticas públicas basadas en promover el desarrollo de nuevas tecnologías HAI.

Biografía del autor/a

Angélica Pigola, Nove de Julho University

PhD Student in Administration at UNINOVE – University Nove de Julho (2023) and FGV Fundação Getúlio Vargas (2025), Master in Administration at UNINOVE – University Nove de Julho (2021), post-graduation in Marketing at FAAP – Armando Alvares Penteado Foundation (2000) and bachelor’s degree in business administration at UNIP – University Paulista (1995). Revisor at International Journal of Innovation (IJI) and International Journal Innovation Science (IJIS). Corporate experience in Human Capital planning and strategy, and Human Resources Digital Transformation. Supporting companies in mergers and acquisitions providing regulatory support in human capital decisions

Priscila Rezende da Costa, Nove de Julho University

PhD in Business Administration at University of São Paulo, FEA USP (2012). Master’s in business administration ate University of São Paulo, FEA RP USP (2007). Currently, Director of Postgraduate Program in Administration at UNINOVE and major researcher of productivity scholarship, CNPq - PQ 2. Editor of the International Journal of Innovation (IJI) and Innovation & Management Review (IMR). Leader of the CNPq Research Group on Innovation Strategy, in research themes of company-university cooperation, dynamic capabilities, and internationalization of innovation.

Luísa Margarida Cagica Carvalho , Institute Polytechnic of Setúbal

Associate Professor at Department of Economics and Management, School of Business and Administration, Institute Polytechnic of Setúbal, Portugal. She is researcher at the Center for Advanced Studies in Management and Economics (CEFAGE), University of Évora (Portugal). She received her PhD in Management from the University of Évora (Portugal). She is also invited professor on University of São Paulo-Brazil and on Universidade de Maringá-Brazil on the Post Graduated and PhD programs. She is the   author of several articles in scientific journals, international conferences, books, and book chapters.

Geciane Silveira Porto, University of São Paulo

Associate Professor at FEARP / USP. Experience in Administration area, with emphasis on innovation management, acting mainly on the themes: company-university cooperation, cooperation networks, technological management, Innovation Habitats: incubators and technology parks. Scholarship holder in Technological Development. Coordinator of Dimension at Instituto Nacional S&T. Coordinator of InGTeC - Research Nucleus for Innovation, Technological Management and Competitiveness

Alex Fabianne de Paulo, Federal University of Goiás

Ph.D. in Administration of Organizations at the School of Economics, Administration and Accounting of Ribeirão Preto at the University of São Paulo (FEARP/USP). Professor in Information Management at Federal University of Goiás and member of Institute of Advanced Studies of the University of São Paulo (IEA/USP) and collaborating researcher of Management, Policies, and Information Technologies (NGPTI/UFG) and Innovation, Technological Management and Competitiveness (INGTEC/USP). His interests include innovation management, industry-university relationships, cooperation networks, social network analysis, technological trends, information management, data analysis, business intelligence, sustainability, and alternative energy production technologies.

Citas

Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3–13. https://doi.org/10.1016/j.wpi.2013.12.006

Arthur, W. B. (2007). The structure of invention. Research Policy, 36(2), 274–287. https://doi.org/10.1016/j.respol.2006.11.005

Barthélemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B - Condensed Matter, 38(2), 163–168. https://doi.org/10.1140/epjb/e2004-00111-4

Bhatt, V., Sashikala, P., & Chakraborty, S. (2019). The Impact of Information Technology and Analytics on the Performance of a Hospital: Scale Development in Indian Context. International Journal of Recent Technology and Engineering, 8(3), 2861–2869. https://doi.org/10.35940/ijrte.C5229.098319

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008

Breschi, S., Lissoni, F., & Malerba, F. (2003). Knowledge-relatedness in firm technological diversification. Research Policy, 32(1), 69–87. https://doi.org/10.1016/S0048-7333(02)00004-5

Carvalho, F., Silva, F. T. F., Szklo, A., & Portugal‐Pereira, J. (2019). Potential for biojet production from different biomass feedstocks and consolidated technological routes: A georeferencing and spatial analysis in Brazil. Biofuels, Bioproducts and Biorefining, 13(6), 1454–1475. https://doi.org/10.1002/bbb.2041

Chang, K.-C., Chen, D.-Z., & Huang, M.-H. (2012). The relationships between the patent performance and corporation performance. Journal of Informetrics, 6(1), 131–139. https://doi.org/10.1016/j.joi.2011.09.001

Chartoumpekis, D. V., Fu, C.-Y., Ziros, P. G., & Sykiotis, G. P. (2020). Patent Review (2017–2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants, 9(11), 1138. https://doi.org/10.3390/antiox9111138

de Faria, P., Lima, F., & Santos, R. (2010). Cooperation in innovation activities: The importance of partners. Research Policy, 39(8), 1082–1092. https://doi.org/10.1016/j.respol.2010.05.003

de Paulo, A. F., & Porto, G. S. (2017). Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy, 108, 228–238. https://doi.org/10.1016/j.enpol.2017.06.007

de Paulo, A. F., & Porto, G. S. (2018). Evolution of collaborative networks of solar energy applied technologies. Journal of Cleaner Production, 204, 310–320. https://doi.org/10.1016/j.jclepro.2018.08.344

Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C., & Iliadis, L. (2021). Darknet Traffic Big-Data Analysis and Network Management for Real-Time Automating of the Malicious Intent Detection Process by a Weight Agnostic Neural Networks Framework. Electronics, 10(7), 781. https://doi.org/10.3390/electronics10070781

Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy, 29(2), 109–123. https://doi.org/10.1016/S0048-7333(99)00055-4

Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336. https://doi.org/10.1080/10438590801969073

García-Fernández, J., Gálvez-Ruiz, P., Bohórquez, M. R., Grimaldi-Puyana, M., & Cepeda-Carrión, I. (2020). The Relationship between Technological Capabilities and Organizational Impact: Direct and Indirect Routes for Employed and Self-Employed Personal Fitness Trainers. Sustainability, 12(24), 10383. https://doi.org/10.3390/su122410383

García-Sánchez, E., García-Morales, V., & Martín-Rojas, R. (2018). Influence of Technological Assets on Organizational Performance through Absorptive Capacity, Organizational Innovation, and Internal Labor Flexibility. Sustainability, 10(3), 770. https://doi.org/10.3390/su10030770

Hanneman, R. A., & Riddle, M. (2005). Introduction to Social Network Methods. University of California. https://books.google.com.br/books?id=wAHaygAACAAJ

Hesse-Biber, S. N. (Org.). (2011). The handbook of emergent technologies in social research. Oxford University Press.

Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63. https://doi.org/10.1016/0378-8733(89)90017-8

Huo, M., & Zhang, D. (2012). Lessons from photovoltaic policies in China for future development. Energy Policy, 51, 38–45. https://doi.org/10.1016/j.enpol.2011.12.063

Huynh, T. T., Nguyen, T. D., & Tan, H. (2019). A Decentralized Solution for Web Hosting. 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), 82–87. https://doi.org/10.1109/NICS48868.2019.9023837

Inaba, T., & Squicciarini, M. (2017). ICT: A new taxonomy based on the international patent classification (OECD Science, Technology and Industry Working Papers No 2017/01; OECD Science, Technology and Industry Working Papers, Vol. 2017/01). https://doi.org/10.1787/ab16c396-en

Janavi, E., & Emami, M. (2020). A co-citation study of information security patents in the USPTO database. Library Hi Tech, ahead-of-print(ahead-of-print). https://doi.org/10.1108/LHT-05-2020-0111

Jawad, N., Salih, M., Ali, K., Meunier, B., Zhang, Y., Zhang, X., Zetik, R., Zarakovitis, C., Koumaras, H., Kourtis, M.-A., Shi, L., Mazurczyk, W., & Cosmas, J. (2019). Smart Television Services Using NFV/SDN Network Management. IEEE Transactions on Broadcasting, 65(2), 404–413. https://doi.org/10.1109/TBC.2019.2898159

Jeon, J., & Suh, Y. (2019). Multiple patent network analysis for identifying safety technology convergence. Data Technologies and Applications, 53(3), 269–285. https://doi.org/10.1108/DTA-09-2018-0077

Kim, C. (2017). A systematic approach to identify core service technologies. Technology Analysis & Strategic Management, 29(1), 68–83. https://doi.org/10.1080/09537325.2016.1197898

Kim, D., Lee, H., & Kwak, J. (2017). Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network. Research Policy, 46(7), 1234–1254. https://doi.org/10.1016/j.respol.2017.05.008

Kim, L., & Ju, J. (2019). Can media forecast technological progress? A text-mining approach to the on-line newspaper and blog’s representation of prospective industrial technologies. Information Processing & Management, 56(4), 1506–1525. https://doi.org/10.1016/j.ipm.2018.10.017

Kuan, C.-H., Huang, M.-H., & Chen, D.-Z. (2013). Cross-field evaluation of publications of research institutes using their contributions to the fields’ MVPs determined by h-index. Journal of Informetrics, 7(2), 455–468. https://doi.org/10.1016/j.joi.2013.01.008

Kumar, V., Lai, K.-K., Chang, Y.-H., Bhatt, P. C., & Su, F.-P. (2021). A structural analysis approach to identify technology innovation and evolution path: A case of m-payment technology ecosystem. Journal of Knowledge Management, 25(2), 477–499. https://doi.org/10.1108/JKM-01-2020-0080

Kumar, V., Lai, K.-K., Chang, Y.-H., & Lin, C.-Y. (2018). Mapping Technological Trajectories for Energy Storage Device through Patent Citation Network. 2018 9th International Conference on Awareness Science and Technology (iCAST), 56–61. https://doi.org/10.1109/ICAwST.2018.8517199

Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., Liu, R.-S., Zhang, J., & Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427–441. https://doi.org/10.1007/s11192-012-0944-x

Linares, I. M. P., De Paulo, A. F., & Geciane, G. S. (2019). Patent-based network analysis to understand technological innovation pathways and trends. Technology in Society, 59(101134), 1010–1016. https://edisciplinas.usp.br/pluginfile.php/4980605/mod_resource/content/1/Linares%20et%20al%202019.pdf

Luqueze, M. A. O. (2018). A inovação aberta nas empresas do Índice NASDAQ-100: Um estudo das redes de cooperação formadas a partir das patentes [Doutorado em Administração de Organizações, Universidade de São Paulo]. https://doi.org/10.11606/T.96.2018.tde-25012018-101832

Mao, H., Liu, S., Zhang, J., & Deng, Z. (2016). Information technology resource, knowledge management capability, and competitive advantage: The moderating role of resource commitment. International Journal of Information Management, 36(6), 1062–1074. https://doi.org/10.1016/j.ijinfomgt.2016.07.001

Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press. Oxford, UK.

Paulo, A. F. de. (2019). Cooperação e Rotas Tecnológicas para o desenvolvimento de tecnologias sobre energia solar fotovoltaica: Uma análise baseada em patentes [Doutorado em Administração de Organizações, Universidade de São Paulo]. https://doi.org/10.11606/T.96.2019.tde-25062019-095212

Pereira, C. G., Picanco-Castro, V., Covas, D. T., & Porto, G. S. (2018). Patent mining and landscaping of emerging recombinant factor VIII through network analysis. Nature Biotechnology, 36(7), 585–590. https://doi.org/10.1038/nbt.4178

Pessôa, L. C., Deamici, K. M., Pontes, L. A. M., Druzian, J. I., & Assis, D. de J. (2021). Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Research, 60, 102504. https://doi.org/10.1016/j.algal.2021.102504

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance. Information Systems Frontiers, 20(2), 209–222. https://doi.org/10.1007/s10796-016-9720-4

Porto, G. S., Kannebley, S., Baroni, J., & Romano, A. (2012). Rotas Tecnológicas e Sistemas de Inovação (Relatório Final), Economia de Baixo Carbono: Avaliação de Impactos de Restrições e Perspectivas Tecnológicas.

Ritter, T., & Gemünden, H. G. (2003). Network competence. Journal of Business Research, 56(9), 745–755. https://doi.org/10.1016/S0148-2963(01)00259-4

Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843. https://doi.org/10.1016/j.respol.2015.06.006

Seddon, J. J. J. M., & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300–307. https://doi.org/10.1016/j.jbusres.2016.08.003

Si, S., & Chen, H. (2020). A literature review of disruptive innovation: What it is, how it works and where it goes. Journal of Engineering and Technology Management - JET-M, 56(November 2019), 101568. https://doi.org/10.1016/j.jengtecman.2020.101568

Smojver, V., Štorga, M., & Zovak, G. (2021). Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network. Journal of Knowledge Management, 25(2), 433–453. https://doi.org/10.1108/JKM-01-2020-0079

Suppa, P., & Zimeo, E. (2015). A Clustered Approach for Fast Computation of Betweenness Centrality in Social Networks. 2015 IEEE International Congress on Big Data, 47–54. https://doi.org/10.1109/BigDataCongress.2015.17

Verspagen, B. (2007). Mapping Tehcnological Trajectories as patent citation networks: A study on the history of fuell cell research. Advances in Complex Systems, 10(01), 93–115. https://doi.org/10.1142/S0219525907000945

Wang, B., Liu, Y., Zhou, Y., & Wen, Z. (2018). Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy, 46, 322–330. https://doi.org/10.1016/j.nanoen.2018.02.020

Wang, Y., Su, X., Wang, H., & Zou, R. (2019). Intellectual capital and technological dynamic capability: Evidence from Chinese enterprises. Journal of Intellectual Capital, 20(4), 453–471. https://doi.org/10.1108/JIC-06-2018-0096

Wilden, R., & Gudergan, S. P. (2015). The impact of dynamic capabilities on operational marketing and technological capabilities: Investigating the role of environmental turbulence. Journal of the Academy of Marketing Science, 43(2), 181–199. https://doi.org/10.1007/s11747-014-0380-y

Xu, G., Wu, Y., Minshall, T., & Zhou, Y. (2018). Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China. Technological Forecasting and Social Change, 136, 208–221. https://doi.org/10.1016/j.techfore.2017.06.030

Xue, L., Huang, L., Li, X., & Zhou, Y. (2016). Roadmapping for industrial emergence and innovation gaps to catch-up: A patent-based analysis of OLED industry in China. International Journal of Technology Management, 72(1/2/3), 105. https://doi.org/10.1504/IJTM.2016.10001552

You, D., & Park, H. (2018). Developmental Trajectories in Electrical Steel Technology Using Patent Information. Sustainability, 10(8), 2728. https://doi.org/10.3390/su10082728

Zarrabeitia, E., Bildosola, I., Río Belver, R. M., Alvarez, I., & Cilleruelo-Carrasco, E. (2019). Laser Additive Manufacturing: A Patent Overview. In Á. Ortiz, C. Andrés Romano, R. Poler, & J.-P. García-Sabater (Orgs.), Engineering Digital Transformation (p. 183–191). Springer International Publishing. https://doi.org/10.1007/978-3-319-96005-0_23

Zhang, M. (2010). Social Network Analysis: History, Concepts, and Research. In B. Furht (Org.), Handbook of Social Network Technologies and Applications (p. 3–21). Springer US. https://doi.org/10.1007/978-1-4419-7142-5_1

Zhao, Z.-Y., Chen, Y.-L., & Chang, R.-D. (2016). How to stimulate renewable energy power generation effectively? – China’s incentive approaches and lessons. Renewable Energy, 92, 147–156. https://doi.org/10.1016/j.renene.2016.02.001

Zhou, Y., Dong, F., Kong, D., & Liu, Y. (2019). Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technological Forecasting and Social Change, 144, 205–220. https://doi.org/10.1016/j.techfore.2019.03.014

Zhou, Y., Minshall, T., & Hampden-Turner, C. (2010). Building Innovation Capabilities: An Inquiry into the dynamic growth process of university spinouts in China. International Journal of Innovation and Technology Management, 07(03), 273–302. https://doi.org/10.1142/S0219877010002082

Descargas

Publicado

21/03/2022

Cómo citar

PIGOLA, A.; COSTA, P. R. da .; CARVALHO , L. M. C. .; PORTO, G. S.; PAULO, A. F. de . Rutas tecnológicas de High Analytics Information: un análisis de red de patentes. Research, Society and Development, [S. l.], v. 11, n. 4, p. e38011427569, 2022. DOI: 10.33448/rsd-v11i4.27569. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27569. Acesso em: 15 ene. 2025.

Número

Sección

Revisiones