Estudio de la tecnología de plasma frío utilizando el software VOSviewer

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i5.28107

Palabras clave:

Alimentación; Enfermedades transmitidas por los alimentos; Adhesión bacteriana; Biofilm; Seguridad microbiológica; Plasma frío atmosférico.

Resumen

Uno de los mayores desafíos para la industria alimentaria es ofrecer productos microbiológicamente seguros y nutritivos a los consumidores. Las enfermedades transmitidas por alimentos son consideradas un problema de salud pública recurrente, además de causar impactos económicos para las industrias. Las bacterias patógenas pueden introducirse en los alimentos durante varios pasos a lo largo de la cadena de producción. En este contexto, las biopelículas microbianas se destacan como fuentes de contaminación de alimentos y superficies de procesamiento. Estas biopelículas forman comunidades resistentes a los desinfectantes químicos convencionales. Así, se hace evidente la demanda de nuevas alternativas para la descontaminación de superficies, despertando el interés por la aplicación del plasma frío. Esta revisión tuvo como objetivo un estudio sistemático de la literatura sobre el uso de plasma frío, utilizando la base de datos Science Direct, con las palabras clave cold plasma y biofilms. Los artículos seleccionados fueron enviados para su análisis en el software Vosviewer. Después de interpretar los mapas de densidad obtenidos, se observó que los temas más estudiados relacionados con el plasma frío fueron la seguridad alimentaria, la conservación de alimentos y el plasma. Se encontró que la tecnología de plasma frío es un nuevo enfoque, para el cual se han observado resultados promisorios para la seguridad microbiológica de los alimentos, siendo una alternativa viable para la descontaminación de superficies y alimentos, así como para la reducción de la adhesión microbiana y formación de biopelículas en alimentos y superficies de procesamiento. Sin embargo, se necesitan más estudios para su validación y comercialización industrial y sobre sus efectos en las características sensoriales de los alimentos sometidos a este tratamiento.

Biografía del autor/a

Amanda Cândido Brito , Universidade Federal do Triângulo Mineiro

Estudante de graduação do curso de Engenharia de Alimentos. 

Lucas Donizete da Silva , Universidade Federal de Uberlândia

Estudiante de doctorado en Ingeniería Química 

Priscila Cristina Bizam Vianna , Universidade Federal do Triângulo Mineiro

Professora do Departamento de Engenharia de Alimentos 

Aline Dias Paiva , Universidade Federal do Triângulo Mineiro

Professora de Microbiologia de Alimentos 

Letícia Dias dos Anjos Gonçalves , Universidade Federal do Triângulo Mineiro

Professora do Departamento de Engenharia de Alimentos 

Citas

Abdallah, M., Khelissa, O., Ibrahim, A., Benoliel, C., Heliot, L., Dhulster, P., et al. (2015). Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int. J. Food Microbiol. 214, 38–47. 10.1016/j.ijfoodmicro.2015.07.022

Aguiar, M. M., Almeida, G. M. de, Camargo Filho, W. L. de, Rosário, D. K. A. do, Araújo, L. A., & Naves, E. A. A. (2021). Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial. Research, Society and Development, 10(2), e50310212670. 10.33448/rsd-v10i2.12670

Aviat, F., Le, I., Federighi, M., & Montibus, M. (2020). Comparative study of microbiological transfer from four materials used in direct contact with apples. International Journal of Food Microbiology, 333, 108780. doi.org/10.1016/j.ijfoodmicro.2020.108780

Bahrami, A., Baboli, Z. M., Schimmel, K., Jafari, S. M., Williams, L. (2020). Eficiência de novas tecnologias de processamento para o controle de Listeria monocytogenes em produtos alimentícios. Tendências em Ciência e Tecnologia de Alimentos, 96, 61-78. doi.org/10.1016/j.tifs.2019.12.009

Bintsis, T. (2018). Microbial pollution and food safety. AIMS Microbiology, 4(3), 377–396. 10.3934/microbiol.2018.3.377

Boletim Epidemiológico 32. Secretaria de Vigilância em Saúde. Ministério da Saúde. Informe sobre surtos notificados de doenças transmitidas por água e alimentos – Brasil, 2016-2019. v. 51, 2020.

Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(4), 2014. 10.3390/ijerph18042014

Chen, Y.-Q., Cheng, J.-H., & Sun, D.-W. (2019). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60(16), 2676–2690. 10.1080/10408398.2019.1654429

Choi, S., Puligundla, P., & Mok, C. (2015). Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685–694. 10.1007/s13213-015-1147-5

Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 6:E41. 10.3390/pathogens6030041

DeFlorio, W., Liu, S., White, A. R., Taylor, T. M., Cisneros‐Zevallos, L., Min, Y., & Scholar, E. M. A. (2021). Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 20(3), 3093–3134. 10.1111/1541-4337.12750

Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77, 187-191. 10.1016/j.foodcont.2017.02.019

Devleesschauwer, B., Haagsma, J. A., Mangen, M.-J. J., Lake, R. J., & Havelaar, A. H. (2018). The Global Burden of Foodborne Disease. Food Safety Economics, 107–122. 10.1007/978-3-319-92138-9_7

Fernandes, M. da S., Fujimoto, G., de Souza, L. P., Kabuki, D. Y., da Silva, M. J., & Kuaye, A. Y. (2015). Dissemination of Enterococcus faecalis and Enterococcus faeciumin a Ricotta Processing Plant and Evaluation of Pathogenic and Antibiotic Resistance Profiles. Journal of Food Science, 80(4), M765–M775. 10.1111/1750-3841.12824

Hertwig, C., Meneses, N., & Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science & Technology, 77, 131–142. 10.1016/j.tifs.2018.05.011

Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51–57. 10.1016/j.fm.2014.07.009

Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. 10.1128/aem.02660-15

Handorf, O., Pauker, V. I., Weihe, T., Schnabel, U., Freund, E., Bekeschus, S., Ehlbeck, J. (2020). Plasma-treated water affects Listeria monocytogenes vitality and biofilm formation. 10.21203/rs.3.rs-31328/v1

Karam, L., Casetta, M., Chihib, N. E., Bentiss, F., Maschke, U., & Jama, C. (2016). Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. Journal of the Taiwan Institute of Chemical Engineers, 64, 299–305. 10.1016/j.jtice.2016.04.018

Katsigiannis, A. S., Bayliss, D. L., & Walsh, J. L. (2021). Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control, 121, 107543. ISSN 0956-7135. doi.org/10.1016/j.foodcont.2020.107543.

Kim, J.-S., Lee, E.-J., Choi, E. H., & Kim, Y.-J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science & Emerging Technologies, 22, 124–130. 10.1016/j.ifset.2013.12.012

Kim, J. Y., Song, M. G., Jeon, E. B., Kim, J. S., Lee, J. S., Choi, E. H., … Park, S. Y. (2021). Antibacterial effects of non-thermal dielectric barrier discharge plasma against Escherichia coli and Vibrio parahaemolyticus on the surface of wooden chopping board. Innovative Food Science & Emerging Technologies, 73, 102784. 10.1016/j.ifset.2021.102784

Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. 10.1016/j.fm.2014.09.010

Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81–86. 10.1016/j.ijms.2003.11.016

Li, X., & Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. 10.1016/j.jfoodeng.2016.02.026

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. 10.1016/j.foodcont.2016.12.021

Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(1). 10.1038/srep38610

Mandal, R., Singh, A., & Pratap Singh, A. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93–103. 10.1016/j.tifs.2018.07.014

Min, S. C., Roh, S. H., Niemira, B. A., Sites, J. E., Boyd, G., & Lacombe, A. (2016). Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology, 237, 114–120. 10.1016/j.ijfoodmicro.2016.08.025

Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Cullen, P. J. (2014). Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. 10.1007/s11947-014-1356-0

Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. 10.1016/j.tifs.2016.07.001

Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3-4), 159–170. 10.1007/s12393-011-9041-9

Misra, N. N., Yafav, B., Roopesh, M. S., & Jo, C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106-120. 10.1111/1541-4337.12398

Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocollids, 58, 150-159. 10.1016/j.foodhyd.2016.02.022

Pankaj, S. K., & Keener, K. M. (2017). Cold Plasma Applications in Food Packaging. Reference Module in Food Science. 10.1016/b978-0-08-100596-5.21417-0

Pankaj, S., Wan, Z. & Keener, K., (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1). doi.org/10.3390/foods7010004.

Pasquali, F., Stratakos, A. C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G., & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559. 10.1016/j.foodcont.2015.08.043

Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631-632, 298–307. 10.1016/j.scitotenv.2018.02.269

Patange, A., Boehm, D., Ziuzina, D., Cullen, P. J., Gilmore, B., & Bourke, P. (2019). High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 293, 137–145. 10.1016/j.ijfoodmicro.2019.01.005

Pignata, C., D’Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology, 122(6), 1438–1455. 10.1111/jam.13412

Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225-232. 10.1016/j.jwpe.2016.01.003

Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235-241. 10.1016/j.ifset.2017.02.012.

Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. 10.1016/j.foodchem.2017.05.016

Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. 10.1016/j.biotechadv.2015.01.002

Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181–188. 10.1016/j.fbp.2016.01.010

Shah, K., & Muriana, P. M. (2021). Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Applied Microbiology, 1(1), 89–103. 10.3390/applmicrobiol1010008

Shi, H., Heleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10, 1042-1052. 10.1007/s11947-017-1873-8

Skowron, K., Hulisz, K., Gryń, G., Olszewska, H., Wiktorczyk, N., & Paluszak, Z. (2018). Comparison of selected disinfectants efficiency against Listeria monocytogenes biofilm formed on various surfaces. International Microbiology, 21(1-2), 23–33. 10.1007/s10123-018-0002-5

Soares, S. V., Picolli, I. R. A., & Casagrande, J. (2018). Pesquisa Bibliográfica. Pesquisa Bibliométrica, Artigo de Revisão e Ensaio Teórico em Administração e Contabilidade. Administração: Ensino e Pesquisa, 19(2), 308-339. 10.13058/raep.2018.v19n2.970

Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Cold Plasma Interactions With Food Constituents in Liquid and Solid Food Matrices. Cold Plasma in Food and Agriculture, 179–203. 10.1016/b978-0-12-801365-6.00007-x

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225-233. 10.1016/j.ifset.2015.12.022

USDA. (2016). Cleanliness helps prevent foodborne illness [fact sheet]. https://www.fsis.usda.gov/wps/portal/fsis/topics/foodsafety-education/getanswers/food-safety-fact-sheets/safe-foodhandling/cleanliness-helps-prevent-foodborne-illness/ct_index

World Health Organization - WHO. (2020). Food safety [fact sheet]. https://www.who.int/news-room/fact-sheets/detail/food-safety.

Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol, 10(10), 1778-1791. 10.1007/s11947-017-1947-7

Yang, Y., Mikš-Krajnik, M., Zheng, Q., Lee, S. B., Lee, S. C., and Yuk, H. G. (2016). Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 54, 98–105. 10.1016/j.fm.2015.10.010

Zhu, Y., Li, C., Cui, H., & Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science & Technology, 99, 142–151. 10.1016/j.tifs.2020.03.001

Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. 10.1016/j.ijfoodmicro.2015.05.019

Ziuzina, D., Misra, N. N., Cullen, P. J., Keener, K., Mosnier, J. P., Vilaró, I., Bourke, P. (2016). Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Medicine, 6(3-4), 397–412. 10.1615/plasmamed.2017019498

Publicado

05/04/2022

Cómo citar

BRITO , A. C. .; SILVA , L. D. da .; VIANNA , P. C. B. .; PAIVA , A. D. .; GONÇALVES , L. D. dos A. .; NAVES, E. A. A. . Estudio de la tecnología de plasma frío utilizando el software VOSviewer. Research, Society and Development, [S. l.], v. 11, n. 5, p. e24211528107, 2022. DOI: 10.33448/rsd-v11i5.28107. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28107. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones