Caracterización, retención y disponibilidad de agua de diferentes tipos de biocarbón animal y vegetal

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i5.28360

Palabras clave:

Recursos hídricos; Residuo orgánico; Pirólisis; Carbón; Cambios climáticos.

Resumen

El aumento de la producción de alimentos para satisfacer la demanda mundial ha generado un gran volumen de residuos orgánicos. Cuando se reinsertan en la cadena productiva, estos residuos pueden brindar varios servicios ambientales, especialmente en lo que se refiere a la calidad y cantidad de los recursos hídricos. El biocarbón tiene un gran potencial como enmienda del suelo, fuente de nutrientes y acondicionador, lo que aumenta la retención de agua. Este estudio produjo y caracterizó biocarbón a partir de seis tipos de biomasa (bagazo de caña de azúcar-SBB, cascarilla de coco seca-DCB, cascarilla de coco verde-GCB, lodo de depuradora-SSB, mazorca de maíz-CCB y bagazo de naranja-OBB. El objetivo principal fue evaluar la retención de agua del biocarbón El biocarbón se produjo mediante pirólisis lenta a una temperatura de 550ºC, molido y tamizado para determinar porosidad, área superficial específica, conductividad eléctrica, pH, capacidad de intercambio catiónico, morfología, análisis estructural, inmediato y elemental, distribución del tamaño de partículas, capacidad de retención de agua (WRC), curva de retención y agua disponible (AW). Todos los biochars mostraron una gran variabilidad en sus características. WRC varió de 88% a 628% de la siguiente manera: SSB < OBB < GCB < CCB = DCB < SBB. AW osciló entre 10 % y 140 % donde SBB > DCB > CCB = GCB > OBB > SSB. Por lo tanto, SBB tuvo la mayor retención de agua, siendo SSB el menos eficiente.

Citas

Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M. & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183–191. https://doi.org/10.1016/j.geoderma.2013.03.003

Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R. & Westgate, M.(2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. Department of Agronomy, Iowa State University, Ames, Iowa, USA. GCB Bioenergy, 5, 132–143. https:// 10.1111/gcbb.12026

Batista, E. M. C .C., Shultz, J., Matos, T. T. S., Fornari, M.R., Ferreira, T. M., Szpoganicz, B., De Freitas, R. A., Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep, 8:1–9. https://doi.org/10.1038/s41598-018-28794-z

Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & Laborde, C. (2017). Raising Soil Organic Matter Content to Improve Water Holding Capacity. SL447, Soil and Water Science Department, UF/IFAS Extension, p. 1-5. http://edis.ifas.ufl.edu

Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K. & Davies, C.A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. http://dx.doi.org/10.1016/j.biombioe.2014.03.059.

Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1:75–87. https://doi.org/10.1007/s42773-019-00008-3

Chen, H. X., Du, Z. L., Guo, W., Zhang, Q. Z. (2011). Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain. The journal of applied ecology, 22 (11), 2930-2934.

Devens, K. U., Pereira Neto, S., Oliveira, D. L. Do A. & Gonçalves, M. S. (2018). Characterization of Biochar from Green Coconut Shell and Orange Peel Wastes. Rev. Virtual Quim, 10 (2), 288-294.

Feitosa, A. A., Teixeira, W. G., Ritter, E., Resende, F. A. & Kern, J. (2020). Caracterização Química de Amostras de Biocarvão de Casca de Banana e Bagaço de Laranja Carbonizados a 400 e 600°C. Rev. Virtual Quim,12 (4), 00-00.

Francioso, O., Sanchez-Cortes, S., Bonora, S., Roldán, M.L. & Certini, G. (2011). Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. Journal of Molecular Structure, 994 (1), 155–162. https://10.1016/j.molstruc.2011.03.011

Gaskin, J., Steiner, C., Harris, K., Das, K. & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE. 51, 2061–2069.

Gondim, R. S., Muniz, C. R., Lima, C. E. P. & Santos, C. L. A. D. (2018). Explaining the water-holding capacity of biochar by scanning electron microscope images. Revista Caatinga, 31(4), 972–979. 10.1590/1983-21252018v31n420rc

Gonzaga, M. I. S., Souza, D. C. F. & Santos, J. C. J. (2021). Use of organic waste biochar as an innovative alternative for increasing agricultural productivity in small rural communities. Research, Society and Development, 10 (4), p. e8910413848, 2021. 10.33448/rsd-v10i4.13848.

Guo, X., Liu, H. & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management, 102, 884–899. 10.1016/j.wasman.2019.12.003

Hallin, I. L., Douglas P, Doerr, S. H. & Bryant R. (2015). The effect of addition of awettable biochar on soil water repellency. Eur J Soil Sci 66(6): 1063–1073.

Huang, H. E., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P. & Garg, A. (2021). Efects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11:7419, https://doi.org/10.1038/s41598-021-86701-5.

IBI, International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. Versão 2.1, 2015, 61 p.

Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A. & Sonoiki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23):6613-6621. 10.5194/bg-11-6613-2014

Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 10.1111/gcb.14054.

Lal, R., Negassa, W. & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 79–86. https://doi.org/10.1371/journal.pone.0179079.

Liu, X.Y., Zheng, J.F., Zhang, D.X., Cheng, K., Zhou, H.M., Zhang, A., Li, L.Q., Joseph, S., Smith, P. & Crowley, D. (2016). Biochar Has No Effect on Soil Respiration across Chinese Agricultural Soils. Science of the Total Environment, 554, 259-265. https://doi.org/10.1016/j.scitotenv.2016.02.179

Mao, J., Zhang, K. & Chen, B. (2019). Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environmental Pollution, 253, 779-789. https://doi.org/10.1016/j.envpol.2019.07.051.

Mitchell, P. J., Dalley, T. S. L., Helleur, R. J. (2013). Preliminary laboratory production and characterization of biochars from lignocellulosie municipal waste. Journal of Analytical and Appliend Pirolysis, 99, 71-78.

Nair, R.R., Mondal, M.M. & Weichgrebe, D. (2020). Biochar from co-pyrolysis of urban organic wastes—investigation of carbon sinks potential using ATR-FTIR and TGA. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-020-01000-9.

Ndede, E.O., Kurebito, S., Idowu, O., Tokunari, T. & Jindo, K. (2022). The Potential of Biochar to Enhance the Water Retention Properties of Sandy Agricultural Soils. Agronomy,12, 311. https://doi.org/10.3390/ agronomy12020311

Nguyen, B. T. & Lehmann, J. (2009). Black carbon decomposition under varying water regimes. Org. Geochem., 40, 846–853.

Rafiq, M.K, Bachmann, R.T, Rafiq, M.T, Shang Z., Joseph S., Long R. (2016). Influence of pyrolysis temperature on physicochemical properties of corn stover (Zea mays L) biochar and feasibility for carbon capture and energy balance. PLoS ONE 11:e0156894.

Rajkovich, S., Enders, A., Hanley, K., Hyland, C. & Zimmerman, A.R., Lehmann, J. (2011). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271-284. https://doi.org/10.1007/s00374-011-0624-7.

Razzaghi, F., Obour, P. B. & Arthur, E. (2019). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055

Rumpel, C., Ba, A, Darboux, F.,, Chaplot, V. & Planchon, O. (2009). Erosion budget and process selectivity of black carbon at meter scale. Geoderma, 154(1,2):131-137. https://doi.org/10.1016/j.geoderma.2009.10.006

Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Bhatia, D., Dhiman, J. & Singh, J. (2020). A sustainable paradigm of sewage sludge biochar: Valorization, opportunities, challenges and future prospects. Journal of Cleaner Production, 269, 122259. 10.1016/j.jclepro.2020.122259.

Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Management, 1, 289–303. https://doi.org/10.4155/cmt.10.32

Sun, J.,He, F., Pan, Y. & Zhang, Z. (2016). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculture Scandinavica, Section B — Soil & Plant Science, 10.1080/09064710.2016.1214745

Tan, C., Yaxin, Z., Hongtao, W., Wenjing, L., Zeyu, Z., Yuancheng, Z. & Lulu, R. (2014). Influence biochars of pyrolysis temperature on characteristics and heary metal adsorptive performance of biochars derived from municipal sewage sludge. Bioresource Technology, 164, 47-54. https://doi.org/10.1016/j.biortech.2014.04.048

Tomczyk, A., Sokołowska, Z. & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ Sci Biotechnol., 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3

Wang, T., Camps-Arbestain, M. & Hedley, M. (2013). Predicting C aromaticity of biochars based on their elemental composition. Organic Geochemistry, 62, 1-6. https://doi.org/10.1016/j.orggeochem.2013.06.012

Wijitkosum, S. & Jiwnok, P. (2019). Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration. Appl. Sci., 9, 3980., 10.3390/app9193980

Publicado

13/04/2022

Cómo citar

SANTOS, J. A.; GONZAGA, M. I. S.; ALMEIDA, A. Q. de .; SILVA, A. J. da; SANTOS, J. C. de J. .; LIMA, I. da S. Caracterización, retención y disponibilidad de agua de diferentes tipos de biocarbón animal y vegetal. Research, Society and Development, [S. l.], v. 11, n. 5, p. e48411528360, 2022. DOI: 10.33448/rsd-v11i5.28360. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28360. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas