Influencia de la vibración de todo el cuerpo y el entrenamiento de la marcha con carga adicional en el funcionamiento, el equilibrio y la marcha en pacientes con enfermedad de Parkinson

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i8.28612

Palabras clave:

Enfermedad de Parkinson; Vibración; Marcha; Funcionalidad; Equilibrio postural.

Resumen

La enfermedad de Parkinson (EP) se caracteriza por la pérdida selectiva de neuronas dopaminérgicas de la sustancia negra compacta y la vía nigroestriatal, lo que conduce a alteraciones sensoriales y motoras. El objetivo del presente estudio fue comparar el efecto de la vibración de todo el cuerpo y el entrenamiento de la marcha con carga adicional sobre el funcionamiento, el equilibrio y la marcha en pacientes con EP. Veintidós pacientes masculinos y femeninos (edad media: 61 ± 5,6 años) fueron asignados aleatoriamente a un Grupo de Control (GC), Grupo de Vibración (GV) o Grupo de Peso Agregado (GPA). Se realizaron las siguientes evaluaciones antes y después de la intervención: Escala Unificada de Calificación de la Enfermedad de Parkinson – subescalas “Actividades de la Vida Diaria” y “Examen Motor”; Test Tinetti, Timed Up and Go test, Berg Balance Scale y baropodometría. Las variables ordinales se evaluaron mediante la prueba de Kruskal-Wallis (p ≤ 0,05) y las variables numéricas se analizaron mediante ANOVA de dos vías seguido de la prueba post hoc de Student-Newman-Keuls (p ≤ 0,05). Los resultados demostraron un aumento significativo en el funcionamiento, el equilibrio y la calidad de la marcha en el GV y GPA en comparación con el GC. El entrenamiento vibratorio y el entrenamiento de la marcha con peso adicional ejercen una influencia positiva en el funcionamiento, el equilibrio y la marcha en pacientes con EP. Se pueden realizar otros estudios comparando el efecto del entrenamiento vibratorio con el apoyo de peso parcial y la adición de peso corporal utilizando las mismas variables de la presente investigación.

Citas

Aboutorabi, A., Arazpour, M., Bahramizadeh, M., Farahmand, F., & Fadayevatan, R. (2018). Effect of vibration on postural control and gait of elderly subjects: a systematic review. Aging Clinical and Experimental Research, 30(7), 713–726. https://doi.org/10.1007/s40520-017-0831-7

Alashram, A. R., Padua, E., & Annino, G. (2019). Effects of Whole-Body Vibration on Motor Impairments in Patients With Neurological Disorders: A Systematic Review. American Journal of Physical Medicine & Rehabilitation, 98(12), 1084–1098. https://doi.org/10.1097/PHM.0000000000001252

Arcolin, I., Pisano, F., Delconte, C., Godi, M., Schieppati, M., Mezzani, A., Picco, D., Grasso, M., & Nardone, A. (2016). Intensive cycle ergometer training improves gait speed and endurance in patients with Parkinson’s disease: A comparison with treadmill training. Restorative Neurology and Neuroscience, 34(1), 125–138. https://doi.org/10.3233/RNN-150506

Arias, P., Chouza, M., Vivas, J., & Cudeiro, J. (2009). Effect of whole body vibration in Parkinson’s disease: a controlled study. Movement Disorders, 24(6), 891–898. https://doi.org/10.1002/mds.22468

Berg, K. O., Maki, B. E., Williams, J. I., Holliday, P. J., & Wood-Dauphinee, S. L. (1992). Clinical and laboratory measures of postural balance in an elderly population. Archives of Physical Medicine and Rehabilitation, 73(11), 1073–1080.

Brucki, S. M. D., Nitrini, R., Caramelli, P., Bertolucci, P. H. F., & Okamoto, I. H. (2003). Sugestões para o uso do mini-exame do estado mental no Brasil TT - Suggestions for utilization of the mini-mental state examination in Brazil. Arquivos de Neuro-Psiquiatria, 61(3B), 777–781. https://doi.org/10.1590/S0004-282X2003000500014

Capecci, M., Pournajaf, S., Galafate, D., Sale, P., Le Pera, D., Goffredo, M., De Pandis, M. F., Andrenelli, E., Pennacchioni, M., Ceravolo, M. G., & Franceschini, M. (2019). Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 62(5), 303–312. https://doi.org/10.1016/j.rehab.2019.06.016

Creaby, M. W., & Cole, M. H. (2018). Gait characteristics and falls in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism & Related Disorders, 57, 1–8. https://doi.org/10.1016/j.parkreldis.2018.07.008

Cuevas-Trisan, R. (2017). Balance Problems and Fall Risks in the Elderly. Physical Medicine and Rehabilitation Clinics of North America, 28(4), 727–737. https://doi.org/10.1016/j.pmr.2017.06.006

Dietz, V., Gollhofer, A., Kleiber, M., & Trippel, M. (1992). Regulation of bipedal stance: dependency on “load” receptors. Experimental Brain Research, 89(1), 229–231. https://doi.org/10.1007/BF00229020

Ebersbach, G., Edler, D., Kaufhold, O., & Wissel, J. (2008). Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 89(3), 399–403. https://doi.org/10.1016/j.apmr.2007.09.031

Feng, Y.-S., Yang, S.-D., Tan, Z.-X., Wang, M.-M., Xing, Y., Dong, F., & Zhang, F. (2020). The benefits and mechanisms of exercise training for Parkinson’s disease. Life Sciences, 245, 117345. https://doi.org/10.1016/j.lfs.2020.117345

Filippin, N. T., da Costa, P. H. L., & Mattioli, R. (2010). Effects of treadmill-walking training with additional body load on quality of life in subjects with Parkinson’s disease. Brazilian Journal of Physical Therapy, 14(4), 344–350. https://doi.org/10.1590/s1413-35552010005000016

Filippin, N., da Costa, P. H. L., & Mattioli, R. (2017). Treadmill training with additional body load: Effects on the gait of people with parkinson’s disease. International Journal of Therapy and Rehabilitation, 24(6), 248–254. https://doi.org/10.12968/ijtr.2017.24.6.248

Flores, F. da T., Rossi, A. G., & Schmidt, P. da S. (2011). Avaliação do equilíbrio corporal na doença de Parkinson TT - Physical balance evaluation in Parkinson disease. Arquivos Internacionais de Otorrinolaringologia, 15(2), 142–150. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1809-48722011000200004&lang=en

Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., Giladi, N., Holloway, R. G., Moore, C. G., Wenning, G. K., Yahr, M. D., & Seidl, L. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Movement Disorders, 19(9), 1020–1028. https://doi.org/10.1002/mds.20213

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M. B., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., … LaPelle, N. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129–2170. https://doi.org/10.1002/mds.22340

Kaut, O., Brenig, D., Marek, M., Allert, N., & Wüllner, U. (2016). Postural Stability in Parkinson’s Disease Patients Is Improved after Stochastic Resonance Therapy. Parkinson’s Disease, 2016, 7948721. https://doi.org/10.1155/2016/7948721

King, L. A., Peterson, D. S., Mancini, M., Carlson-Kuhta, P., Fling, B. W., Smulders, K., Nutt, J. G., Dale, M., Carter, J., Winters-Stone, K. M., & Horak, F. B. (2015). Do cognitive measures and brain circuitry predict outcomes of exercise in Parkinson Disease: a randomized clinical trial. BMC Neurology, 15, 218. https://doi.org/10.1186/s12883-015-0474-2

Lau, R. W. K., Teo, T., Yu, F., Chung, R. C. K., & Pang, M. Y. C. (2011). Effects of whole-body vibration on sensorimotor performance in people with Parkinson disease: a systematic review. Physical Therapy, 91(2), 198–209. https://doi.org/10.2522/ptj.20100071

Leavy, B., Kwak, L., Hagströmer, M., & Franzén, E. (2017). Evaluation and implementation of highly challenging balance training in clinical practice for people with Parkinson’s disease: protocol for the HiBalance effectiveness-implementation trial. BMC Neurology, 17(1), 27. https://doi.org/10.1186/s12883-017-0809-2

Opara, J., Małecki, A., Małecka, E., & Socha, T. (2017). Motor assessment in Parkinson’s disease. Annals of Agricultural and Environmental Medicine, 24(3), 411–415. https://doi.org/10.5604/12321966.1232774

Rehn, B., Lidström, J., Skoglund, J., & Lindström, B. (2007). Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scandinavian Journal of Medicine & Science in Sports, 17(1), 2–11. https://doi.org/10.1111/j.1600-0838.2006.00578.x

Rivolta, M. W., Aktaruzzaman, M., Rizzo, G., Lafortuna, C. L., Ferrarin, M., Bovi, G., Bonardi, D. R., Caspani, A., & Sassi, R. (2019). Evaluation of the Tinetti score and fall risk assessment via accelerometry-based movement analysis. Artificial Intelligence in Medicine, 95, 38–47. https://doi.org/10.1016/j.artmed.2018.08.005

Schenkman, M. L., Clark, K., Xie, T., Kuchibhatla, M., Shinberg, M., & Ray, L. (2001). Spinal movement and performance of a standing reach task in participants with and without Parkinson disease. Physical Therapy, 81(8), 1400–1411. https://doi.org/10.1093/ptj/81.8.1400

Sharififar, S., Coronado, R. A., Romero, S., Azari, H., & Thigpen, M. (2014). The effects of whole body vibration on mobility and balance in Parkinson disease: a systematic review. Iranian Journal of Medical Sciences, 39(4), 318–326.

Shin, M.-S., Kim, T.-W., Lee, J.-M., Ji, E.-S., & Lim, B.-V. (2017). Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats. Journal of Exercise Rehabilitation, 13(1), 30–35. https://doi.org/10.12965/jer.1734906.453

Skinner, J. W., Christou, E. A., & Hass, C. J. (2019). Lower Extremity Muscle Strength and Force Variability in Persons With Parkinson Disease. Journal of Neurologic Physical Therapy, 43(1), 56–62. https://doi.org/10.1097/NPT.0000000000000244

Takakusaki, K. (2017). Functional Neuroanatomy for Posture and Gait Control. Journal of Movement Disorders, 10(1), 1–17. https://doi.org/10.14802/jmd.16062

Tarakad, A., & Jankovic, J. (2018). Essential Tremor and Parkinson’s Disease: Exploring the Relationship. Tremor and Other Hyperkinetic Movements, 8, 589. https://doi.org/10.7916/D8MD0GVR

Toole, T., Maitland, C. G., Warren, E., Hubmann, M. F., & Panton, L. (2005). The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation, 20(4), 307–322.

Trigueiro, L. C. de L., Gama, G. L., Ribeiro, T. S., Ferreira, L. G. L. de M., Galvão, É. R. V. P., Silva, E. M. G. de S. E., Júnior, C. de O. G., & Lindquist, A. R. R. (2017). Influence of treadmill gait training with additional load on motor function, postural instability and history of falls for individuals with Parkinson’s disease: A randomized clinical trial. Journal of Bodywork and Movement Therapies, 21(1), 93–100. https://doi.org/10.1016/j.jbmt.2016.05.009

van Hedel, H. J. A., Waldvogel, D., & Dietz, V. (2006). Learning a high-precision locomotor task in patients with Parkinson’s disease. Movement Disorders, 21(3), 406–411. https://doi.org/10.1002/mds.20710

Winser, S. J., Kannan, P., Bello, U. M., & Whitney, S. L. (2019). Measures of balance and falls risk prediction in people with Parkinson’s disease: a systematic review of psychometric properties. Clinical Rehabilitation, 33(12), 1949–1962. https://doi.org/10.1177/0269215519877498

Zirek, E., Ersoz Huseyinsinoglu, B., Tufekcioglu, Z., Bilgic, B., & Hanagasi, H. (2018). Which cognitive dual-task walking causes most interference on the Timed Up and Go test in Parkinson’s disease: a controlled study. Neurological Sciences, 39(12), 2151–2157. https://doi.org/10.1007/s10072-018-3564-2

Descargas

Publicado

18/06/2022

Cómo citar

GARÇÃO, D. C.; SANTOS, M. R. H. dos .; CORREIA, A. G. da S.; CAJUEIRO, C. A. G.; OLIVEIRA, J. S. de; FRAGA, B. P.; MOREIRA, O. S. M. Influencia de la vibración de todo el cuerpo y el entrenamiento de la marcha con carga adicional en el funcionamiento, el equilibrio y la marcha en pacientes con enfermedad de Parkinson. Research, Society and Development, [S. l.], v. 11, n. 8, p. e27811828612, 2022. DOI: 10.33448/rsd-v11i8.28612. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28612. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud