Películas poliméricas en el tratamiento de heridas: una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i6.28757

Palabras clave:

Polímeros; Heridas; Apósitos; Vendajes; Cicatrización de heridas; Enseñanza em la salud.

Resumen

Objetivo: Buscar evidencias sobre el desempeño de las películas poliméricas en el tratamiento de heridas, recopilando artículos científicos en los que se hayan realizado ensayos que evalúen la calidad y eficiencia de las películas poliméricas en el manejo de heridas. Metodología: Se realizó una revisión narrativa de carácter cualitativo, siguiendo las recomendaciones de la Colaboración Cochrane de forma adaptada, en Pubmed y Capes Periodicals, incluyendo estudios producidos en los últimos cinco años, sin restricción de idioma. Resultado: En total, se incluyeron 7 estudios, que trajeron datos importantes sobre el buen desempeño de las películas poliméricas en el proceso de cicatrización de heridas. Consideraciones finales: Los polímeros permiten producir películas poliméricas resistentes, flexibles, transparentes, biocompatibles, que permiten la incorporación de activos y con capacidad de absorción de exudados, además de tener un bajo costo. Demostraron excelentes resultados en el tratamiento de las heridas probadas promoviendo una cicatrización más rápida en comparación con los controles. La incorporación de las buenas propiedades de estos materiales al conocimiento clínico y fisiológico permite utilizar un enfoque más avanzado y eficiente para el cuidado de heridas, haciendo que el proceso de curación sea más cómodo y funcional para el paciente.

Citas

Afonso, T., Ramos, M. F. H., França, I. L., Pontes, F. A. R., & Silva, S. S. C. (2016). Cuidado Parental à Criança com Paralisia Cerebral: uma Revisão Sistemática da Literatura. Rev. Bras. Ed. Esp., 22(3), 455-470.

Ali, M., Khan, N. R., Basit, H. M., & Mahmood, S. (2020). Physico-chemical based mechanistic insight into surfactant modulated sodium Carboxymethylcellulose film for skin tissue regeneration applications. J. Polym. Res, 27, 1–11.

Azhar, F. F., Rostamzadeh, P., Khordadmehr, M., & Mesgari-Abbasi, M. (2021) Evaluation of a novel bioactive wound dressing: an in vitro and in vivo study. J Wound Care, 2;30(6):482-490. 10.12968/jowc.2021.30.6.482.

Basit, H. M., Ali, M., Shah, M. M., Shah, S. U., Wahab, A., Albarqi, H. A., Alqahtani, A. A., Walbi, I. A., & Khan, N. R. (2021) Microondas habilitadas fisicamente reticuladas de alginato de sódio e filme de pectina e sua aplicação em combinação com nanopartículas de quitosana-curcumina modificadas. Uma nova estratégia para a cicatrização de feridas de queimaduras de 2º grau em animais. Polímeros, 2716. https://doi.org/10.3390/polym1316271

Cesaretti, I. U. R. (1998). Processo fisiológico de cicatrização da ferida. Pelle Sana, 2: 10-2.

Chattopadhyay, S., & Raines, R.T., (2014). Collagen-based biomaterials for wound healing. Biopolymers. Aug;101(8):821-33. 10.1002/bip.22486.

Chen, E.Y.; Liu, W.F.; Megido, L.; Díez, P.; Fuentes, M.; Fager, C.; & Mathur, S. (2018). Understanding and utilizing the biomolecule/nanosystems interface. In Nanotechnologies in Preventive and Regenerative Medicine, 1st ed.; Elsevier Science: Amsterdam, The Netherlands; pp. 207–297.

Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci, 53, 86–168.

Choi, M., Hasan, N., Cao, J., Lee, J., Hlaing, S. P., & Yoo, J.W. (2020). Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int J Biol Macromol, 1;142:680-692. 10.1016/j.ijbiomac.2019.10.009.

Dennis, G., Harrison, W., Agnes, K., & Erastus, G., (2016). Effect of biological control antagonists adsorbed on chitosan immobilized silica nanocomposite on ralstonia solanacearum and growth of tomato seedlings. Adv. Res. 6, 1–23

Dhivya, S., Padma, V.V., & Santhini, E., (2015). Wound dressings–a review. BioMedicine 5 (4). https://doi.org/10.7603/s40681-015-0022-9

Fahs, A., Brogly, M., & Bistac, S., Schmitt, M. (2010). Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties, Carbohydrate Polymers, 80(1), 105-114, https://doi.org/10.1016/j.carbpol.2009.10.071

.

Fahimirad, S., & Ajalloueian, F., (2019). Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 566, 307–328. https://doi.org/ 10.1016/j.ijpharm.2019.05.053.

Ferreira, A. M., Santos, I., & Sampaio, C. E. P. (2004). O cuidado de enfermagem nos procedimentos de coleta para análise microbiológica de feridas: aplicabilidade de duas técnicas. Arquivos de Ciência da Saúde, 11(3), 137- 41.

Gould, L. J., (2016). Topical collagen-based biomaterials for chronic wounds: Rationale and clinical application. Adv Wound Care (New Rochelle) 1;5(1):19-31. doi: 10.1089/wound.2014.0595.

Hasatsri, S., Pitiratanaworanat, A., Swangwit, S., Boochakul, C., & Tragoonsupachai, C., (2018). Comparison of the morphological and physical properties of different absorbent wound dressings. Dermatol Res. Pract. 2018, 9367034. https://doi.org/ 10.1155/2018/9367034.

He, L., Cai, S., Wu, B., Mu, C., Zhang, G., & Lin, W. (2012) Trivalent chromium and aluminum affect the thermostability and conformation of collagen very differently. J Inorg Biochem. Dec; 117:124-30, 10.1016/j.jinorgbio.2012.08.017. PMID: 23085592.

Hosseini, M. S. & Nabid, M. R. (2020). Synthesis of Chemically Cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug deliver applications. International Journal of Biological Macromolecules.

Jafari, A., Hassanajili, S., Karimi, M. B., Emami, A., Ghaffari, F., & Azarpira, N. (2018). Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications. Journal of the mechanical behavior of biomedical materials, 88, 395–405. https://doi.org/10.1016/j.jmbbm.2018.09.001

Júnior, D. M., Hausen, M. A., Asami, J., Higa, A. M., Leite, F. L., Mambrini, G P., Rossi, A. L., Komatsu, D., & Duek, E. A. (2021). Um novo substituto dérmico contendo álcool polivinílico com nanopartículas de prata e colágeno com ácido hialurônico: abordagens in vitro e in vivo. Antibióticos, 10, 742. https://doi.org/10.3390/antibiotics10060742

Junior, J. A. O., Shiota, L. M. & Chiavacci, L.A. (2014). Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Revista Matéria, 24-32.

Khanmohammadi, M., Elmizadeh, H., & Ghasemi, K., (2015). Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran. J. Pharm. Res. 14, 665–675.

Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen. International journal of pharmaceutics, 221(1-2), 1–22. https://doi.org/10.1016/s0378-5173(01)00691-3

Leng, Q., Li, Y., Pang, X., Wang, B., Wu, Z., Lu, Y., Xiong, K., Zhao, L., Zhou, P., & Fu, S. (2020). Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing. Drug delivery, 27(1), 1676–1685. https://doi.org/10.1080/10717544.2020.1853280

Mohebali, A., & Abdouss, M. (2020). Layered biocompatible pH-responsive antibacterial composite film based on HNT/PLGA/chitosan for controlled release of minocycline as burn wound dressing. Int J Biol Macromol, 1;164:4193-4204. doi: 10.1016/j.ijbiomac.2020.09.004. PMID: 32891643.

Nesic, A.R., & Seslija, S.I., (2017). The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging. Food Packaging 637–697.

Notodihardjo, S. C., Morimoto, N., Munisso, M. C., Le, T. M., Mitsui, T., Kakudo, N., & Kusumoto, K. (2020). A comparison of the wound healing process after application of three dermal substitutes with or without basic fibroblast growth factor impregnation in diabetic mice. J. Plast. Reconstr. Aesthet. Surg, 73, 1547–1555

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria/RS. Ed. UAB/NTE/UFSM. ISBN 978-85-8341-204-5

Saber-Samandari, S., Yekta, H., & Saber-Samandari, S., (2015). Effect of iron substitution in hydroxyapatite matrix on swelling properties of composite bead. J. Mineral Metal Mater. Eng. 1, 19–25.

Sahana, T. G. Rekha, P. (2018) Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 45, 2857–2867.

Schiefer, J. L., Rath, R., Held, M., Petersen, W., Werner, J. O., Schaller, H. E., & Rahmanian Schwarz, A., (2016). Frequent application of the new gelatin-collagen nonwoven accelerates wound healing. Adv. Skin Wound Care. 29, 73–78. https://doi.org/ 10.1097/01.ASW.0000476097.86161.57

Sezer, A. D., & Cevher, E. (2011). Biopolymers as Wound Healing Materials: Challenges and New Strategies. In (Ed.), Biomaterials Applications for Nanomedicine. IntechOpen. https://doi.org/10.5772/25177

Sharma, A., Puri, V., Kumar, P., & Singh, I. (2021). Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. Membranes. 11, 7. https://doi.org/10.3390/membranes11010007

Souza, F. R. A. (2018). Efeitos da reticulação com genipina em membranas de quitosana/colágeno para potencial uso como biomaterial. Trabalho de conclusão de curso (Bacharelado em Engenharia de Biotecnologia e Bioprocessos) – Universidade Federal de Campina Grande, Sumé.

Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res, 58, 81–94.

Tarun K, Gobi N. (2012). Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian J Fibre Text Res; 37:127–132.

Thomas, S. Visakh, P. M., & Mathew, A. P. (2012). Natural polymers: Their Blends, Composites, and Nanocomposites. State of Art, New Challenges and Opportunities. In: Thomas, S. Visakh, P. M.; Mathew, A. P., (ed.). Springer Science & Business Media, 2012. Advances in Natural Polymers: Composites and Nanocomposites. Ch. 1, p. 1-20.

Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 49, 832–864. https://doi.org/10.1002/ polb.22259.

Zhong, Y., Xiao, H., Seidi, F., & Jin, Y. (2020). Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules,21, 2983–3006.

Publicado

22/04/2022

Cómo citar

BARROS, C. F. de .; LIMA, I. A. de; BUNHAK, Élcio J. Películas poliméricas en el tratamiento de heridas: una revisión. Research, Society and Development, [S. l.], v. 11, n. 6, p. e10111628757, 2022. DOI: 10.33448/rsd-v11i6.28757. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28757. Acesso em: 23 nov. 2024.

Número

Sección

Revisiones