Brotes de bambú - una evaluación de los polvos obtenidos de residuos del procesamiento de la especie Dendrocalamus asper

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i5.28894

Palabras clave:

Bambú; Subproductos; Composición; Cianeto; Microestrutura.

Resumen

El objetivo de este estudio fue caracterizar el residuo sólido del procesamiento de brotes de bambú, que corresponde a más del 70% de la materia prima, más allá de las propiedades tecnológicas y de remoción de cianuro. El preprocesamiento se llevó a cabo en agua hirviendo durante 30, 45, 60 y 90 minutos. Las muestras de residuos de control, tratadas y pretratadas se secaron en un horno con circulación de aire durante 48 horas a 65 ± 5 °C, seguido de molienda en un molino de cuchillas y se estandarizaron en tamiz de malla 60 de tamaño de partícula. El polvo mostró bajo contenido de lípidos y alto contenido de fibra, proteína y minerales proporcional a las harinas tradicionales. Se evaluaron las propiedades tecnológicas para la capacidad de retención de agua y aceite, mostrando valores elevados, lo que se comprobó mediante análisis de microscopía electrónica de barrido (SEM), que mostró estructura de alta porosidad. En cuanto a la presencia de glucósidos cianogénicos, se concluyó que el preprocesamiento y el secado redujeron significativamente pero no eliminaron la taxifilina, lo que genera una alerta para el procesamiento de este material como alimentos seguros, sin embargo demostrando ser un importante material absorbente en el tratamiento del aceite. -aguas y suelos contaminados.

Biografía del autor/a

Maria Gabriela Azevedo Barros, Universidade Federal de Santa Catarina

Food Science and Technology

Lucas Bertoldi Watanabe, Universidade Federal de Santa Catarina

Food Science and Technology

Ana Carolina Moura de Sena Aquino, Universidade Federal de Santa Catarina

Food Science and Technology

Citas

AOAC (2005). Official Methods of Analysis. 18th edition, Gaithersburg, M.D., USA, Association of Official Analytical Chemists.

Barbosa, A.C. L., Hassimotto, N. M. A., Lajolo, F. M., & Genovese, M. I. (2006). Teores de isoflavonas e capacidade antioxidante da soja e produtos derivados. Ciência e Tecnologia de Alimentos, 26, 921-926 https://doi.org/10.1590/S0101-20612006000400032.

Brazil. ANVISA (National Health Surveillance Agency), Resolução CNNPN nº 12 de 1978.

Brazil. ANVISA (National Health Surveillance Agency), RDC nº 54 de 12 DE NOV. 2012.

Buzmakov, S., Egorova, D., & Gatina, E. (2019). Effects of crude oil contamination on soils of the Ural region. Journal of Soils and Sediments, 19, 38-48. https://doi.org/10.1007/s11368-018-2025-0.

Cardador-Martínez, A., Loarca-Piña, G., & Oomah, B. D. (2002). Antioxidant Activity in Common Beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 50, 6975–6980. https://doi.org/10.1021/jf020296n.

Chongtham, N., Bisht, M. S., & Haorongbam, S. (2011). Nutritional Properties of Bamboo Shoots: Potential and Prospects for Utilization as a Health Food. Comprehensive Review in Food Science and Food Safety, 10, 153-168. https://doi.org/10.1111/j.1541-4337.2011.00147.x.

Chongtham, N., Elangbam, D., & Sharma, M. L. (2007). Changes in nutrient components during ageing of emerging juvenile bamboo shoots. International Journal of Food Science and Nutrition, 58, 612-618. https://doi.org/10.1080/09637480701359529.

de Simas, K. N., Vieira, L. do N., Podestá, R., Vieira, M. A., Rockenbach, I. I., Petkowicz, C. L. O., de Deus Medeiros, J., de Francisco, A., Amante, E. R., & Amboni, R. D. M. C., 2010. Microstructure, nutrient composition and antioxidant capacity of king palm flour: A new potential source of dietary fibre. Bioresource Technology, 101, 5701-5707. https://doi.org/10.1016/j.biortech.2010.02.053.

Drochioiu, G. (2002). Fast and highly selective determination of cyanide with 2,2-dihydroxy-1,3-indanedione. Talanta, 56, 1163-1165. https://doi.org/10.1016/S0039-9140(01)00609-9.

Fan, R., Ma, W., & Zhang, H. (2020). Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. Science of the Total Environment, 748, 142463. https://doi.org/10.1016/j.scitotenv.2020.142463.

Haque, R. M., & Bradbury, H. J. (2002). Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry, 77, 107-114. https://doi.org/10.1016/S0308-8146(01)00313-2.

Hewelke, E., Szatyłowicz, J., Hewelke, P., Gnatowski, T., & Aghalarov, R. (2018). The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils. Water, Air, & Soil Pollution, 229, 51. https://doi.org/10.1007/s11270-018-3720-6.

IAL (1985). Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos para Análise de Alimentos, 3 ed. São Paulo: IMESP, 1, 32–33.

Khalil, H. P. S. A., Shahnaz, S. B. S., Ratnam, M. M., Ahmad, F., & Fuaad, N. A. N. (2006). Recycle Polypropylene (RPP) - Wood Saw Dust (WSD) Composites - Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties. Journal of Reinforced Plastics and Composites, 25, 1291-1303. https://doi.org/10.1177/0731684406062060.

Kingston, P. F., 2002. Long-term Environmental Impact of Oil Spills. Spill Science & Technology Bulletin, 7, 53-61. https://doi.org/10.1016/S1353-2561(02)00051-8.

Klamerus-Iwan, A., Błońska, E., Lasota, J., Kalandyk, A., & Waligórski, P. (2015). Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. Water, Air, and Soil Pollution, 226, 1-9. https://doi.org/10.1007/s11270-015-2649-2.

Kleinhenz, V., & Midmore, D. J. (2001). Aspects of bamboo agronomy. Advances in Agronomy, 74, 99-153. https://doi.org/10.1016/S0065-2113(01)74032-1.

Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K., & Vadivel, V. (2012). Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT - Food Science and Technology, 45, 269-276. https://doi.org/10.1016/j.lwt.2011.08.006.

Lin, M. J. Y., Humbert, E. S., & Sosulky, F. W. (1974). Certain Functional Properties of Sunflower Meal Products. Journal of Food Science, 39, 368-370. https://doi.org/10.1111/j.1365-2621.1974.tb02896.x.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426–428. https://doi.org/10.1021/ac60147a030.

Nongdam, P., & Tikendra, L. (2014). The Nutritional Facts of Bamboo Shoots and Their Usage as Important Traditional Foods of Northeast India. International Scholarly Research Nutrition, 2014, 679073. https://doi.org/10.1155/2014/679073.

Pandey, A. K., & Ojha, V., 2014. Precooking processing of bamboo shoots for removal of anti-nutrients. Journal of Food Science and Technology, 51, 43-50. https://doi.org/10.1007/s13197-011-0463-4.

Pinto, J., Athanassiou, A., & Fragouli, D. (2016). Effect of the porous structure of polymer foams on the remediation of oil spills. Journal of Physics D: Applied Physics, 49, 145601. https://doi.org/10.1088/0022-3727/49/14/145601.

Rana, B., Awasthi, P., & Kumbhar, B. K. (2012). Optimization of processing conditions for cyanide content reduction in fresh bamboo shoot during NaCl treatment by response surface methodology. Journal of Food Science and Technology, 49, 103-109. https://doi.org/10.1007/s13197-011-0324-1.

Satya, S., Bal, L. M., Singhal, P., & Naik, S. N. (2010). Bamboo shoot processing: food quality and safety aspect (a review). Trends in Food Science and Technology, 21, 181-189. https://doi.org/10.1016/j.tifs.2009.11.002.

Singh, S.R., Singh, R., Kalia, S., Dalal, S., Dhawan, A.K., & Kalia, R.K. (2013). Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiology and Molecular Biology of Plants, 19, 21-41. https://doi.org/10.1007/s12298-012-0147-1.

Sood, S., Walia, S., Gupta, M., & Sood, A. (2013). Nutritional Characterization of Shoots and Other Edible Products of an Edible Bamboo - Dendrocalamus hamiltonii. Current Research in Nutrition and Food Science, 1, 169-176. https://doi.org/10.12944/CRNFSJ.1.2.08.

Sosusky, F. W. (1962). The centrifuge method for determination flour absorption in hard red spring wheats. Cereal Chemistry, 39, 344–350.

Surleva, A., & Drochioiu, G. (2013). A modified ninhydrin micro-assay for determination of total cyanogens in plants. Food Chemistry, 141, 2788-2794. https://doi.org/10.1016/j.foodchem.2013.05.110.

Tsuge, K., Kataoka, M., & Seto, Y. (2001). Rapid Determination of Cyanide and Azide in Beverages by Microdiffusion Spectrophotometric Method. Journal of Analytical Toxicology, 25, 228-236. https://doi.org/10.1093/jat/25.4.228.

Vieira, M. A., Podestá, R., Tramonte, K. C., Amboni, R. D. de M. C., Simas, K. N. de, Avancini, S. R. P., & Amante, E. R. (2009). Chemical composition of flours made of residues from the king palm (Archontophoenix alexandrae) industry. Brazilian Archives of Biology and Technology, 52, 973-980. https://doi.org/10.1590/S1516-89132009000400021.

Watanabe, L. B., Aquino, A. C. M. S., & Amante, E. R. (2021). Pasta as a new product from bamboo shoot (Dendrocalamus asper): physicochemical and microbiological properties. Research, Society and Development, 10(3), e27610313353. https://doi.org/10.33448/rsd-v10i3.13353.

Wang, Y., Chen, J., Wang, D., Ye, F., He, Y., Hu, Z., &Zhao, G. (2020). A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. Journal of Functional Foods, 71, 104015. https://doi.org/10.1016/j.jff.2020.104015.

WHO, Hydrogen cyanide and cyanides: Human health aspects. Concise International chemical assessment document; 61, 2004.

Yin, Z., Li, Yuhang, Song, T., Bao, M., Li, Yiming, Lu, J., & Li, Yang (2020). Preparation of superhydrophobic magnetic sawdust for effective oil/water separation. Journal of Cleanear Production, 253, 120058. https://doi.org/10.1016/j.jclepro.2020.120058.

Zhang, T., Liu, Y., Zhong, S., & Zhang, L. (2020). AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere, 246, 125726. https://doi.org/10.1016/j.chemosphere.2019.125726.

Publicado

18/04/2022

Cómo citar

BARROS, M. G. A. .; WATANABE, L. B. .; AQUINO, A. C. M. de S. .; AMANTE, E. R. Brotes de bambú - una evaluación de los polvos obtenidos de residuos del procesamiento de la especie Dendrocalamus asper. Research, Society and Development, [S. l.], v. 11, n. 5, p. e57411528894, 2022. DOI: 10.33448/rsd-v11i5.28894. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28894. Acesso em: 3 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas