Evaluación cualitativa de la sostenibilidad de la producción de bioetanol utilizando la metodología GBEP: un caso comparativo entre cáscara de coco y bagazo de caña de azúcar
DOI:
https://doi.org/10.33448/rsd-v11i7.29607Palabras clave:
Sostenibilidad; GBEP; E2G; Biomasas.Resumen
La producción convencional de bioetanol se produce a través del procesamiento de la caña de azúcar. Dado que Brasil genera residuos lignocelulósicos en abundancia, se han considerado rutas de producción de bioetanol a partir de biomasa residual. En este contexto, este estudio tuvo como objetivo evaluar la sostenibilidad de dos rutas de producción de bioetanol de segunda generación (E2G), una a partir de bagazo de caña de azúcar y otra a partir de cáscara de coco. Para ello, nueve indicadores propuestos por la metodología GBEP (Global Bioenergy Partnership), a saber, emisiones de GEI, emisiones no GEI, uso y eficiencia del agua, variaciones de ingresos, empleos en el sector bioenergético, incidencia de accidentes de trabajo, enfermedades y muertes, productividad, balance energético y aumento del valor bruto de la producción de bioenergía. Después de evaluar las rutas de producción de bioetanol, se construyó un resumen gráfico concluyente para identificar la más sostenible. La ruta a través del bagazo de caña de azúcar se deriva de la tecnología Iogen y se utiliza en la planta de Costa Pinto da Raízen, que produce este biocombustible a escala industrial, mientras que la ruta de producción a través de la cáscara de coco se está mejorando a escala de banco. El análisis de los indicadores muestra que, si bien la ruta de la cascarilla de coco presenta mayor sustentabilidad social, con mejor remuneración de los empleados y menor frecuencia de lesiones, enfermedades y muertes ocupacionales, la ruta del bagazo de caña presenta mayor sustentabilidad ambiental y económica, debido a la menor emisión de GEI. emisiones y extracción de agua, además de una mayor productividad y mayores ingresos netos por producción. Por tanto, el análisis comparativo producido por la aplicación de la metodología GBEP demuestra que la ruta del bagazo de caña de azúcar es la más sostenible en relación a la producción de E2G.
Citas
ANP – AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. (2016). Perspectivas do etanol na matriz de transportes do Brasil. AMARAL, A. C. N. (org). In: Seminário internacional sobre uso eficente do uso eficiente do etanol. 3, Campinas.
Bensah, E. C., Kádár, Z., & Mensah, M. Y. (2015). Ethanol production from hydrothermallytreated biomass from west Africa. Bioresources, 10 (4), 6522-6538. https://doi.org/10.15376/biores.10.4.6522-6537
BNDES, CGEE. (2008). Bioetanol de cana-de-açúcar: Energia para o desenvolvimento sustentável (1st ed.). Rio de Janeiro: Biblioteca Digital BNDES.
Bronzato, G. R. F., Reis, V. A. C. A., Borro, J. A., Leão, A. L., & Cesarino, I. (2020). Second generation ethanol made from coir husk under the biomass Cascade approach. Molecular Crystals ans Liquid Crystals, 693 (1), 107-114. http://dx.doi.org/10.1080/15421406.2020.1723890
Cabral, M. M. S. (2015). Aproveitamento da casca do coco verde para a produção de etanol de segunda geração. Dissertação (Mestrado em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Alagoas, Maceió-AL.
Cabral, M. M. S., Abud, A. K. S., Silva, C. E. F., & Almeida, R. M. R. G. (2016). Bioethanol production from coconut husk fiber. Ciência Rural, 46 (10), 1872-1877. https://doi.org/10.1590/0103-8478cr20151331
Ebrahimi, M., Caparanga, A. R., & Villaflores, O. B. (2018). Weak base pretreatment on coconut coir fibers for ethanol production using a simultaneous saccharification and fermentation process. Biofuels, 12 (3), 259-265. https://doi.org/10.1080/17597269.2018.1468979
FS Bioenergia Annual Sustainability Report Crop 2018|2019. (2019). FS Bioenergia. Retrieved January 29, 2021, from https://api.mziq.com/mzfilemanager/v2/d/34aeec8a-d08e-440f-ad7f-324e1e1e7745/5ee41dbfcbc4-2c0b-9e23-1155723499b3?origin=2
FS Bioenergia Annual Sustainability Report Crop 2019|2020 (2020). FS Bioenergia. Retrieved January 29, 2021, from https://api.mziq.com/mzfilemanager/v2/d/34aeec8a-d08e-440f-ad7f-324e1e1e7745/bae91c93-68d4-41da-2bdf-b578d32d64ca?origin=2
GBEP. Global Bioenergy Partnership. (2011). The global bioenergy partnership sustainability indicators for bioenergy (1st.ed.). Food and Agricultural Organization of the United Nations (FAO).
GEITEC. Agência Embrapa de Informação Tecnológica. (2021) Árvore do conhecimento: Coco. Embrapa. Retrieved January 22, 2021, from https://www.agencia.cnptia.embrapa.br/gestor/coco/arvore/CONT000giw3qz5o02wx5ok05vadr1u5iye30.html#
Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macedo, G. R. (2015). Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Industrial Crops and Products. 77 (1), 1-12. https://doi.org/10.1016/j.indcrop.2015.06.041
Gonçalves, F. A., Ruiz, H. A., Santos, E. S., Teixeira, J. A., & Macedo, G. R. (2016). Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy, 94 (1), 353-365. https://doi.org/10.1016/j.renene.2016.03.045
Inpasa Agroindustrial S.A. (2021). Inpasa. Retrieved February 1, 2021, from https://www.inpasa.com.br/index.php
Iogen Corporation. (2020). Iogen Corporation. Retrievec September 5, 2020, from http://iogen.ca/cellulosic_ethanol/index.html
Jannah, A. M., & Asip, F. (2015). Bioethanol production from coconut fiber using alcaline pretreatment and acid hydrolysis method. International Journal on Advanced Science Engineering Information Technology, 5 (5), 320-322. https://doi.org/10.18517/ijaseit.5.5.570
Laghari, S. M., Isa, M. H., & Laghari, A. J. (2015). Delignification of coconut husk by microwave assisted chemical pretreatment. Advances in Environmental Biology, 9 (1), 1-5. Retrieved from https://www.researchgate.net/publication/332553312_Delignification_of_coconut_husk_by_microwave_assisted_chemical_pretreatment
Marafon, A. C.; Nunes, M. U. C.; Amaral, A. F. C., & Santos, J. P. (2019). Aproveitamento de cascas do coco para geração de energia térmica: Potencialidades e desafios. Documentos 234. Aracaju: Embrapa Tabuleiros Costeiros.
Melo, L. P., Marques, J. J., & Rocha, I. C. C. (2020). Analysis of methodologies used to assess bioethanol sustainability. Research, Society and Development, 9 (11), 1-16. https://doi.org/10.33448/rsd-v9i11.9794
Melo, L. P. (2021). Avaliação qualitativa da sustentabilidade na produção do bioetanol: um caso comparativo entre a casca do coco e o bagaço da cana-de-açúcar. Dissertação (Mestrado em Engenharia Química) – Programa de Pós-Graduação em Engenharia e Ciências Ambientais. Universidade Federal de Sergipe, São Cristóvão – SE, Brasil.
Nogueira, C. C., Padilha, C. E. A., Jesus, A. A., Souza, D. F. S., Assis, C. F.; Sousa Junior, F. C., & Santos, E. S. (2019). Pressurized pretreatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers. Industrial Crops and Products, 130 (1), 259-266. https://doi.org/10.1016/j.indcrop.2018.12.091
Nova Cana. (2017). Mudanças tecnológicas transformam o perfil de trabalhadores no setor de etanol. Nova Cana. Retrieved March 7, 2021, from https://www.novacana.com/n/cana/trabalhadores/mudancastecnologicas-transformam-o-perfil-de-trabalhadores-usinas-etanol191017#:~:text=Enquanto%20na%20produ%C3%A7%C3%A3o%20de%20etanol,2%20e%203%20sal%C3%A1rios%20m%C3%ADnimos
Nova Cana. (2018). Mecanização da cana avança com desenvolvimento tecnológico. Nova Cana. Retrieved March 7, 2021, from https://www.novacana.com/n/conteudo-patrocinado/mecanizacao-da-canaavanca-com-desenvolvimentotecnologico#:~:text=O%20processo%20de%20mecaniza%C3%A7%C3%A3o%20da,metade%20da%20d%C3%A9cada%20de%202000.&text=Os%20produtores%20de%20cana%20sabem,muitas%20horas%20de%20trabalho%20pesado
Nova Cana. (2021). Propriedades físico-químicas do etanol. Nova Cana. Retrieved January 20, 2021, from https://www.novacana.com/etanol/propriedades-fisico-quimicas
Nunes, M. U. C., Santos, J. R., & Santos, T. C. (2007). Tecnologia para Biodegradação da Casca de Coco Seco e de outros Resíduos do Coqueiro. Circular Técnica 46. Aracaju: Embrapa Tabuleiros Costeiros.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. 2018. Metodologia da pesquisa científica (1st ed).Rio Grande do Sul: UAB/NTE/UFSM. https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf
Projeto SOS Mata Atlântica. (2021). Calculadora de CO2. Retrieved April 1, 2021, from https://www.sosma.org.br/calcule-sua-emissao-de-co2/
Raízen. (2020). Raízen. Retrieved September 5, 2020, from https://www.raizen.com.br/ (accessed 05 September 2020).
Raízen 5 years. (2016). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1516/institucional.php?p=sobre-a-raizen#
Raízen Annual Report 2015|2016 – Inovation. (2016). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1516/capitulo-nove.php?q=litros#
Raízen Annual Report 2016|2017 – GRI Indicators. (2017). Raízen. Retrieved April 24, 2021, from https://www.raizen.com.br/relatorioanual/1617/pt/indicadores-da-gri.html
Raízen Annual Report 2017|2018. (2018). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1718/pdf/PT_Raizen_PDF_simplificado.pdf
Raízen Annual Report 2018|2019. (2019). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1819/pdf/raizen-RA20182019-pt.pdf
Raízen Annual Report 2019|2020. (2020). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1920/pdf/raizen-RA20192020-pt.pdf
Raízen Annual Report 2019|2020: Indicators Book (GRI). (2020). Raízen. Retrieved November 29, 2020, from https://www.raizen.com.br/relatorioanual/1920/pdf/raizenRA1920-caderno-de-indicadores-pt.pdf
Raízen Sustainability Report 2011|2012. (2012). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/280/files/assets/common/downloads/publication.pdf
Raízen Sustainability Report 2012|2013. (2013). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/281/files/assets/common/downloads/publication.pdf
Raízen Sustainability Report 2013|2014. (2014). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/2004/files/assets/basichtml/page33.html
Raízen Sustainability Report 2014|2015. (2015). Raízen. Retrieved March 2, 2021, from https://www.raizen.com.br/relatorioanual/flipbook/2618/files/assets/common/downloads/publication.pdf
Sangian, H. F., Kristian, J., Rahma, S., Dewi, H. K., Puspasari, D. A., Agnesty, S. Y., Gunawan, S., & Widjaja, A. (2015a). Preparation of reducing sugar hydrolyzed from high-lignin coconut coir dust pretreated by the recycled ionic liquid [mmim][dmp] and combination with alkaline. Bulletin of Chemical Reaction Engineering and Catalysis, 10 (1), 8-22. https://doi.org/10.9767/bcrec.10.1.7058.8-22
Sangian, H. F., Ranggina, D., Ginting, G. M., Purba, A. A., Gunawan, S., & Widjaja, A. (2015b). Study of the preparation or sugar from high-lignin lignocellulose applying subcritical water and enzymatic hydrolysis: Synthesis and consumable cost evaluation. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16 (1), 13-27. https://www.researchgate.net/publication/290252043
Sangkharak, K., Chookhun, K., Numerung, J., & Prasertsan, P. (2020). Utilization of coconut meal, a waste product of milk processing, as a novel substrate for biodiesel and bioethanol production. Biomass Conversion and Biorefinery, 10 (1), 651-662. https://doi.org/10.1007/s13399-019-00456- .
São Manoel Sustainability Report 2018. (2018). São Manoel. Retrieved January 28, 2021, from https://www.saomanoel.com.br/arquivos/responsabilidade/relatorios/616adbf231c807d7dca9ec25f649e35f0.pdf
Soares, J., Demeke, M. M., Velde, M. V., Moreno, M. R. F., Kerstens, D., Sels, B. F., Verplaetse, A., Fernandes, A. A. R., Thevelein, J. M., & Fernandes, P. M. B. (2017). Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast. Bioresource Technology, 244 (1), 234-242. https://doi.org/10.1016/j.biortech.2017.07.140
Subhedar, P. P., Ray, P., & Gogate, P.R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics Sonochemistry, 40 (1), 140-150. https://doi.org/10.1016/j.ultsonch.2017.01.030
VIOLANTE, A. C. (2018). Avaliação dos indicadores de sustentabilidade de usinas sucroalcooeiras da região de Sertãozinho, São Paulo, Brasil: Estudo de caso. Tese (Doutorado em Ciências). Universidade de São Paulo, Piracicaba-SP, Brasil.
Yin, R. K. 2015. Estudo de caso: planejamento e métodos. 5.ed. Porto Alegre: Bookman.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Larissa Pedrosa de Melo; José Jailton Marques; Inaura Carolina Carneiro da Rocha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.