Resistencia a la flexión en barras de polímero molidas, con y sin refuerzo de fibra de vidrio

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.29626

Palabras clave:

Materiales dentales; Fuerza flexible; Biomateriales.

Resumen

El objetivo de esta investigación fue probar y comparar la resistencia a la flexión de barras de polímero molidas, reforzadas o no con fibras de vidrio. Para establecer el número de muestra se realizó un estudio piloto en la máquina universal de ensayos (EMIC), definiendo n=5. Las marcas probadas fueron Arch Free Metal, Zantex, Bioplas y PEEK Polymers. Todas las muestras fueron sometidas a un envejecimiento térmico previo y al ensayo de flexión en tres puntos. Los patrones de fractura se analizaron en el microscopio electrónico de barrido. Los resultados mostraron que la barra Arch Free Metal obtuvo valores de resistencia a la flexión significativamente superiores a los encontrados en las barras Zantex y PEEK, las cuales obtuvieron resultados similares entre sí y estas a su vez mostraron resistencia estadísticamente mayor que la barra fabricada en Bioplas. En cuanto a los patrones de fractura, las barras metálicas Arch Free y Zantex presentaron fractura y ruptura parcial de las fibras de vidrio, mientras que las barras de PEEK no alcanzaron la fractura y mostraron un comportamiento plástico, mientras que las de Bioplas se fracturaron. Se concluye que la barra polimérica reforzada Arch Free Metal puede tener un mejor desempeño que las barras fabricadas con otros materiales en cuanto a resistencia a la flexión.

Citas

Aquino, M. M. O., et al. (2018). Cantilever Protocol Bars in Acrylated Polyetheretherketone (Peek): A Mechanical Compression Assay. Oral Health and Dental Management, 17 (2), 1-4.

Anzolin, D., et al. (2019). Biomechanical behavior of an implant system of carbon fiber-reinforced polyether ether ketone (PEEK) bars with different designs: finite elements analysis. InterAmerican Journal of Medicine and Health, 2 (1): e201901003-e201901003.

Ávila, G. B., et al. (2019). Analysis of Mechanical Behavior of Protocol-Type Prosthesis Produced in Modified Polymers with Carbon Nanotubes. Oral Health and Dental Management, 18, 1-8.

Bae, J. M., et al. (2001). The Flexural Properties of Fiber-Reinforced Composite with Light-Polymerized Polymer Matrix. Int J Prosthodont. 14(1), 33-9.

Bergamo, E. T. P., et al. (2021). Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prosthese. Elsevier. 37 (8), 443-453.

Carvalho, G. A. P., et al. (2017). Polyether ether ketone in protocol bars: Mechanical behavior of three designs. J Inter Oral Health. 9(5), 202.

Fajardo, R. S., et al. (2011). The effect of E-glass fibers and acrylic resin thickness on fracture load in a simulated implant-supported overdenture prosthesis. J Prosthet Dent. 106(6), 373-7.

Franco, A. B. G., et al. (2022). The biomechanics of the bone and of metal, Zantex and PEEK bars in normal and osteoporotic condition, surrounding implants over protocols: an analysis by the Finite Element Method. Research Society and Development, 11, e59111226183.

Grecco, P., et al. (2022). Análisis de la resistencia adhesiva de postes de fibra de vidrio sometidos al ensayo mecánico de cizallamiento por extrusión en diferentes protocolos de cementación. Research Society and Development, 11, e25211427344.

Gumbau, G. C., et al. (2019). All-on-4 with tapered neck implants and a hybrid prosthesis with a fiberglass-reinforced structure. J Oral Science Rehabilitation. 5(3), 16-23.

Guzmán, P. C., et al. (2008). Influence of different cantilever extensions and glass or polyaramid reinforcement fibers on fracture strength of implant-supported temporary fixed prosthesis.J Appl Oral Sci. 16(2), 111-5.

Jaros, O. A. L., et al. (2018). Comportamento biomecânico de um sistema de implante usandobarra de poliéter éter cetona: análise de elementos finitos. J Int Soc Prev Community Dent. 8 (5), 446-450.

Martino, N., et al. (2019). Retrospective analysis of survival rates of post-and-cores in a dental school setting. J Prosthet Dent, 23(3), 434-44.

Menini, M., et al. (2015). Effect of Framework in na Implant-Supported Full-Arch Fixed Prosthesis: 3D Finite Element Analysis. Int J Prosthodont. 28(6), 627-30.

Peçanha, A. P. B., et al. (2021). Analysis of In-vivo Cytotoxicity and Irritability of an Epoxy Nanocomposite. Surgery: Current Research, 11, 115.

Silva Júnior, E. V., et al. (2018). Analysis of linear dimensional change of different materials used for casting dental models: plaster type 4, nanocomposites carbon nanostructures, polyurethane resin and epoxy resin. Journal of Dental Health, Oral Disorders & Therapy, 9, 200-205.

Schwitalla, A., et al. (2013). PEEK Dental Implants: A Review of the Literature. Journal of Oral Implantology. 39(6), 743-9.

Tacir, I. H., et al. (2006). Flexural properties of glass fibre reinforced acrylic resin polymers. Aust Dent J. 51(1), 52-6.

Yasue, T., et al. (2019). Effect of fiberglass orientation on flexural properties of fiberglass-reinforced composite resin block for CAD/CAM. Dent Mater J. 38(5), 738-42.

Yilmaz, B., et al. (2018). Failure analysis of high performance polymers and newgeneration cubic zirconia used for implant-supported fixed, cantilevered prostheses. Clin Implant Dent Relat Res, 1-8.

Descargas

Publicado

14/05/2022

Cómo citar

BURGUER NETO, R.; FRANCO, A. G. .; CARVALHO, G. A. P. de .; MARTINS, C. M. .; MECCA JUNIOR, S.; PEREZ, F.; RAMOS, E. V. .; DIAS, S. C. .; FRANCO, A. B. G. . Resistencia a la flexión en barras de polímero molidas, con y sin refuerzo de fibra de vidrio. Research, Society and Development, [S. l.], v. 11, n. 7, p. e2711729626, 2022. DOI: 10.33448/rsd-v11i7.29626. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29626. Acesso em: 2 ene. 2025.

Número

Sección

Ciencias de la salud