Uso de bacterias para la biorremediación de desechos lácteos: una vista panorámica

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.29830

Palabras clave:

Biorremediación; Bacterias; Efluentes lácteos; Tratamiento; Efluentes; Sostenibilidad.

Resumen

La biorremediación consiste en la aplicación de microorganismos para reducir, eliminar o transformar compuestos contaminantes orgánicos o inorgánicos en sustancias inertes. Los residuos sólidos y líquidos se generan diariamente en las actividades industriales y, dentro de las industrias de procesamiento de alimentos, el sector lácteo cuenta con una gran cantidad de efluentes líquidos debido a su amplio uso del agua en diversas actividades y sectores. Para un tratamiento eficaz de los efluentes es fundamental conocer la microbiota del efluente, sus características bioquímicas y actividad metabólica, así como el origen de los compuestos contaminantes. La creciente demanda de productos derivados de la actividad ganadera y agrícola impulsa la búsqueda de tecnologías ambientales capaces de proporcionar un desarrollo sostenible. En este escenario, los estudios biotecnológicos y las aplicaciones de biorremediación ganan cada vez más espacio tanto para el control ambiental como para su aplicación en productos de valor agregado. El objetivo de esta revisión es presentar y discutir las tecnologías más recientes y utilizadas para la biorremediación de efluentes de industrias lácteas utilizando bacterias.

Citas

Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. ur, Soares, B. C. V., Souza, S. L. Q., … & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology. 2019. https://doi.org/10.1016/j.tifs.2019.04.003

Akansha, J., Nidheesh, P.V., Gopinath, A., Anupama, K.V., Kumar, M.S. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, v. 253, 2020. https://doi.org/10.1016/j.chemosphere.2020.126652

Alaa, F., Al-Challabi, H., & Rao, P. B. (2019). Isolation and identification of microbial consortia for biodegradability of dairy effluent. Research Journal of Life Sciences. v.5, p. 609.

Al-Wasify, R.S., Ali, M.N., & Hamed, S.R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Science & Technology. https://doi.org/10.2166/wst.2017.481

Amado, I. R., Vázquez, J.A., Pastrana, L., & Teixeira, J.A. (2016). Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry.v.198, p.54–61. https://doi.org/10.1016/j.foodchem.2015.11.062

Andrade, J.A., Augusto, F., & Jardim, I.C.S.F. (2010). Biorremediação de solos contaminados por petróleo e seus derivados. Ecletica Quimica, v. 35, n. 3, p. 17–43. https://doi.org/10.1590/S0100-46702010000300002

Arvanitoyannis, I. S., Tserkezou, P. (2008). Cereal Waste Management: Treatment Methods and Potential Uses of Treated Waste. Waste Management for the Food Industries (pp.629-702). https://doi.org/10.1016/B978-012373654-3.50013-4

Ashkuzzman.S.M, Forrestal P., Rrichards, K., & Fenton, O. (2019). Dairy industry-derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.05.025

Balaji, L., Chittoor, J.T., & Jayaraman, G. (2020). Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in the pretreatment of food industry effluents. Preparative Biochemistry & Biotechnology. https://doi.org/10.1080/10826068.2020.1734936

Behera, A. R., Dutta, K., Verma, P., Daverey, A., & Sahoo, D.K. (2019). High lipid accumulating bacteria isolated from dairy effluent scum grown on dairy wastewater as potential biodiesel feedstock. Journal of Environmental Management. v. 252, p. 10968. https://doi.org/10.1016/j.jenvman.2019.109686

Biswas, T., Chatterjee, D., Barman, S., Chakraborty, A., Halder, N., Banerjee, S., & Chaudhuri, S.R. (2019). Cultivable bacterial community analysis of dairy activated sludge for value addition to dairy wastewater. Microbiol. Biotechnol. Lett, v. 47, n. 4, p. 585–595. https://doi.org/10.4014/mbl.1901.01014

Boguniewicz-Zablocka, J., Klosok-Bazan, I., & Naddeo, V. (2019). Water quality and resource management in the dairy industry. Environmental Science Pollutant Research, v. 26, p. 1208-1216. https://doi.org/10.1007/s11356-017-0608-8

Borges, T.N., Costa, R.M., & Gontijo, H.M. (2019). Caracterização do efluente de uma indústria de laticínios: proposta de tratamento. Research, Society and Development, v. 8, n. 1. https://doi.org/10.33448/rsd-v8i1.742

Bosso, A., Tomal, A.A.B., Silva, J.B., & Suguimoto, H.H. (2019). β-Galactosidase production using cheese whey. Uniciências, v. 23, n. 1, p. 31-37, 2019. . https://doi.org/10.17921/1415-5141.2019v23n1p31-37

Britz, T. J, van Schalkwyk, C., & Hung, Y. (2006). Chapter one, Treatment of Dairy Processing Wastewater, Taylor & Francis, New York., 2006.

Britz, T. J., Lamprecht, C., & Sigge, G. O. (2008). Dealing with environmental issues. In: Britz, T. J.; Robinson, R.K. (coord). Advanced dairy science and technology. Oxford: Blackwell Publishing Ltd, cap. 2, p. 35-75. https://doi.org/10.1002/9780470697634.ch7

Cammarota, M. C., Teixeira G.A., & Freire, D. M. G. (2002). Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high-fat contents Article. Entomologia Experimentalis et Applicata, v. 103, n. 3, p. 239–248. https://doi.org/10.1023/A:1011973428489

Cetesb. Companhia de Tecnologia de Saneamento Ambiental. Guia técnico ambiental de produtos lácteos – Série P+L. Disponível em: Acess: 20/03/2020.

Chandra, R., Castillo-Zacarias, C., Delgado, P., & Parra-Saldívar, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production. v.183, p.1184–1196. https://doi.org/10.1016/j.jclepro.2018.02.124

Chandran, M., Ahmed, M. F., & Parthasarathi, N. (2014). A comparative study on the protease producing bacteria isolated from dairy effluents of Chennai region, identification, characterization, and application of enzyme in detergent formulation. Journal of Microbiol. v.16, p.41-46. Available at: http://www.envirobiotechjournals.com/article_abstract.php?aid=4870&iid=167&jid=1

Chrispim, M.C, Scholz, M., & Nolasco, M.A. (2020). A framework for resource recovery from wastewater treatment plants in megacities of developing countries. Environmental Research,2020. https://doi.org/10.1016/j.envres.2020.109745

Conama. Conselho Nacional Do Meio Ambiente. (2011). Resolução nº 430, de 13 de maio de 2011: Condições e padrões de lançamento de efluentes.

Conceição, A.A., Rêgo, A.P.B., Santana, H., Teixeira, I., & Matias, A.G.C. (2013). Tratamento De Efluentes Resultantes Do Processamento Da Mandioca E Seus Principais Usos. Revista Meio Ambiente e Sustentabilidade, v. 4, n. 2. https://doi.org/10.22292/mas.v4i2.206

Copam. Conselho Estadual de Política Ambiental. (2017). Deliberação normativa nº 217, de 06 de Dezembro de 2017: Classificação potencial poluidor de empreendimentos e atividades utilizadoras de recursos ambientais em Minas Gerais.

Costa, A. F. de S., Silva, J.R.R., Santos, R.C.M.M, Farias, C.B.B., Sarubbo, L. A., Jordão, R.C.C, & Salgueiro, A.A. (2007). Obtenção de consórcio de microrganismos a partir de amostra de petróleo. Revista Ciência & Tecnologia, v. 1, p. 1–7, 2007. Available at: http://www.unicap.br/revistas/revista_e/artigo1.pdf

Dias, F.F., Silva, C.V.A., Santos, A.F.M.S., Andrade, J.G.P., & Albuquerque, I.L.T. (2018). Treatment of effluents from the dairy industry by applying advanced oxidative process (H2O2/TiO2/UV). Scientific Journal GEAMA, v. 4, n. 3, p. 010-015. Available at: https://www.cabdirect.org/cabdirect/abstract/20193441900

Dinakar, D., & Mithran, A. (2019). Treatment of Dairy Waste Water by using Groundnut Shell as Low-Cost Adsorbent. (2019). International Research Journal of Engineering and Technology. Available at: https://www.irjet.net/archives/V6/i6/IRJET-V6I675.pdf

Dunoyer, A. T., Cuello, R.E.G., & Salinas, R.P. (2019). Biodegradation of dairy wastes using crude enzymatic extract of Yarrowia lipolytica ATCC 9773 Ambiente & Água - An Interdisciplinary Journal of Applied Science. https://doi.org/10.4136/ambi-agua.2448

El-Sesy, M.E. & Mustafa, M.M. (2020). Efficient of bacterial isolates in bio-treatment dairy industries wastewater. International Journal of Information Research and Review, v. 7, n. 1, p. 6680-6687. Available at: https://www.ijirr.com/sites/default/files/issues-pdf/3433.pdf

Fao. Food and Agriculture Organization of the United Nations. (2010) The wealth of waste: The economics of wastewater use in agriculture. Roma. ISBN: 978-92-5-106578-5. Available at: https://www.fao.org/3/i1629e/i1629e00.pdf

Faria, A. B. de C., Monteiro, P. H. R., Auer, C. G., & Angelo, A. C. (2017). Uso de ectomicorrizas na biorremediação florestal. Ciência Florestal, v. 27, n. 1, p. 21-29. https://doi.org/10.5902/1980509826444

Ferronat, N., & Torretta, V. (2020). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16061060

Figueiredo, T. C. F., Oliveira, R.B., Souza, L., & Alves, S.C. (2018). Caracterização físico-química dos efluentes de uma indústria de laticínios. v. 3, p. 599–609, 2015. https://doi.org/10.5151/chenpro-5erq-fq14

Francisco, W. C., De Queiroz, T. M. (2018). Biorremediação. Nucleus, v. 15, n. 1, p. 249-256. https://doi.org/10.3738/1982.2278.1700

Garcha, S., Verma, N., & Brar, S.K. (2016). Isolation characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge sample and evaluation of their biodegradability. Water Resources and Industry. v.16, p.19-28. https://doi.org/10.1016/j.wri.2016.10.002

Gasparin, F. G. M., Magri, A., Neves, A.F., & Celligoi, M.A.P.C. (2012). Produção de Lipase e Biossurfactante por Isolado de Efluente de Laticínio. BBR - Biochemistry and Biotechnology Reports, v. 1, n. 1, p. 28–31. https://doi.org/10.5433/2316-5200.2012v1n1p28

Gaur, N., Narasimhulu, K., & PydySetty, Y. (2018). Recent advances in the bioremediation of persistent organic pollutants and its effect on the environment. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.07.076

Gaylarde, C. C., Bellinaso, M. de L., & Manfio, G. P. (2005). Biorremediação. Biotecnologia Ciência & Desenvolvimento, v. 34, p. 36-43. Available at: https://edisciplinas.usp.br/pluginfile.php/4144372/mod_resource/content/1/Biorremediac%CC%A7a%CC%83o%20-%20Artigo%201.pdf

Goli, A., Shamiri, A., Khosroyar, S., Talaiekhozani, A., Sanaye, R., & Azizi, K. (2019). A Review on Different Aerobic and Anaerobic Treatment Methods in Dairy Industry Wastewater. Journal of Environmental Treatment Techniques. Available at: http://www.jett.dormaj.com/docs/Volume7/Issue%201/A%20Review%20on%20Different%20Aerobic%20and%20Anaerobic%20Treatment%20Methods%20of%20Dairy%20Industry%20Wastewater.pdf

Goud, B. S., Cha, H.L., Koyyada, G., & Kim, J.H. (2020). Augmented Biodegradation of Textile Azo Dye Efuents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Springer Nature. https://doi.org/10.1007/s00284-020-02202-0

Gulhane, V., & Shone, S.D. (2019). Treatment Efficiency Enhancement of Dairy Effluent by Bioaugmentation Using Bacterial Species. Proceedings of Sustainable Infrastructure Development & Management. https://dx.doi.org/10.2139/ssrn.3375406.

Halder, N., Gogoi, M., Sharmin, J., Gupta, M., Banerjee, S., Biswas, T., … Ray Chaudhuri, S. (2020). Microbial Consortium–Based Conversion of Dairy Effluent into Biofertilizer. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1), 04019039. https://doi.org/10.1061/(asce)hz.2153-5515.0000486

Janczukowicz, W., Zieliński, M., & Dębowski, M. (2008). Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Bioresource Technology, v. 99, n. 10, p. 4199-4205. https://doi.org/10.1016/j.biortech.2007.08.077

Jonas.R et al. Sam Houston State University. (2012). Modification of existing wastewater systems with substrate-supported biofilms. English Patent WO 2012/162530 A2. Nov 29.

Joshiba, G.J., Kumar, P.S., Femina, C.C., Jayashree, E., Racchana, R., & Sivanesan, S. (2019). Critical review on biological treatment strategies of dairy wastewater. Desalination and Water Treatment, v. 160, p, 94-109, 2019. https://doi.org/10.5004/dwt.2019.24194.

Justina, M. D., Kempka, A. P., & Skoronski, E. (2017). Tecnologias empregadas no tratamento de efluentes de laticínios do vale do Rio Braço do norte-SC. Revista em Agronegocio e Meio Ambiente, v. 10, n. 3, p. 809–824. https://doi.org/10.17765/2176-9168.2017v10n3p809-824

Kasmi, M., Elleuch, L., Dahmeni, A., Hambi, M., Trabelsi, I., & Snouss, M. (2018). Novel approach for the use of dairy industry wastes for bacterial growth media production. Journal of Environmental Management. v.212, p.176-185. https://doi.org/10.1016/j.jenvman.2018.01.073

Keffala, C., Zouhir, F., Abdallah, K.B.H., & Kammoun, S. (2017). Use of bacteria and yeast strains for dairy wastewater treatment. International Journal of Research in Engineering and Technology. v.6, p. 2321-7308. Available at: https://orbi.uliege.be/bitstream/2268/226062/1/IJRET20170603019.pdf

Lacerda, F., Navoni, J., & Amaral, V. (2019). Biorremediação: Educação em saúde e alternativas à poluição ambiental. p. 82. Available at: https://memoria.ifrn.edu.br/bitstream/handle/1044/1771/A%20biorremedia%c3%a7%c3%a3o.pdf?sequence=5&isAllowed=y

Leonel, L. V., Nascimento, E.G., Bertozzi, J., Vilas Bôas, L.A., & Vilas Bôas, G.T. (2010). Biorremediação do solo. Terra e Cultura, p. 52. Available at: http://periodicos.unifil.br/index.php/Revistateste/article/view/257%3E

M P, Prasad & Manjunath, K. (2011). Comparative study on biodegradation of lipid-rich wastewater using lipase-producing bacterial species. Indian Journal of Biotechnology. 10. 121-124. Available at: http://nopr.niscair.res.in/bitstream/123456789/10960/1/IJBT%2010%281%29%20121-124.pdf

Madhu, P.C. (2016). Utilization of Dairy Effluent for Food Grade Protease Production Using Bacillus sp. American Journal of Bioscience and Bioengineering. v.6, p.90-95. https://doi.org/10.11648/j.bio.20160406.15

Mallmann, V, Aragão, L.W.R., Fernandes, S.S.L., Fernandes, T.C.L., Aragão, R.F.R., & da Silva, R.C.L. (2010). The Advantages of Bioremediation in Environmental Quality. p. 12–15, 2010. http://dx.doi.org/10.17921/1415-6938.2019v23n1p12-15

Manisalidis, I., Stavropolou, E., Stavropolous, A. & Bezirtzoglou, E. (2020). Environmental, and Health Impacts of Air Pollution: A Review. Frontiers. 2020. https://doi.org/10.3389/fpubh.2020.00014

Mazzucotelli, C. A., Ponce, A.G., Kotlar, C.E., & Moreira, M. R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agro-industrial by-products and wastes. Food Sci. Technol. v.33, p.295-303. https://doi.org/10.1590/S0101-20612013005000038.

Moreira, F.D., Cerqueira, V.D., & Saraiva, C.B. (2020). Diagnóstico ambiental e avaliação de pontos críticos de indústria de laticínios de pequeno porte. Revista em Agronegócio e Meio Ambiente, v. 13, n. 319-332, jan./mar. https://doi.org/10.17765/2176-9168.2020v13n1p319-332

Oliveira Netto, A.P., Guerra, L.R.M., Silva, M.R.P., & Silva, R.F. (2015). Biorremediação vegetal do esgoto domiciliar: o caso da fossa verde em comunidades rurais do Alto Sertão Alagoano. Revista Produção e Desenvolvimento, v. 1, n. 3, p. 103–113. https://doi.org/10.32358/rpd.2015.v1.101

Otaibi, N. A., Bakir, E., & Afkar, E. (2020). Efficient alum, and iron supported on silica matrix as gel coagulants for advance the chemical treatment of dairy product effluents. Journal of Sol-Gel Science and Technology. https://doi.org/10.1007/s10971-019-05115-y

Porwal, H.J., Mane, A.V., & Velhal, S.G. (2015). Biodegradation of dairy effluent by using microbial Isolates obtained from activated sludge. Water Resources and Industry. v. 9, p. 1-15. https://doi.org/10.1016/j.wri.2014.11.002

Roccuzzo, S., Beckerman, A.P., & Trögl, J.. (2020). New perspectives on the bioremediation of endocrine-disrupting compounds from wastewater using algae, bacteria, and fungi based Technologies. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-02691-3

Sandaruwani, A., Kumarasinghe, C., Samarakoon, D., Ariyadasa, T. U., & Gunawardena, S. H. P. (2018). Investigation of the Efficiency of Dairy Wastewater Treatment Using Lipid-Degrading Bacterial Strains. Moratuwa Engineering Research Conference. https://doi.org/10.1109/MERCon.2018.8421973

Santos, F.F, Queiroz, R.C.S, & Neto, J.A.A. (2018). Evaluation of application of Cleaner Production techniques in the dairy industry in Southern Bahia. Gestão e Produção, v. 25, n. 1, p. 117-131. https://doi.org/10.1590/0104-530X2234-16

Silva, D. J. P. (2011). Resíduos Na Indústria De Laticínios. Série Sistema de Gestão Ambiental, p. 20. Available at: http://locus.ufv.br/handle/123456789/441

Silva, J. S., Santos, S.S., & Gomes, F. G. G. (2014). A biotecnologia como estratégias de reversão de áreas contaminadas por resíduos sólidos. p. 1361–1370. http://dx.doi.org/10.5902/2236117014943

Silva, M. B., & Rondon, J. N. (2013). Utilização De Fungo De Bambu Na Biorremediação De Solo Contaminado. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 10, n. 10, p. 2175–2184. https://doi.org/10.5902/223611707757

Silveira, S. M., et al. (2018). BIOPLUS - Desenvolvimento Biotecnológico Ltda. composição biorremediadora. Patent BR102016021893-4 A2. Nov 22.

Singh, P., Singh, V.K., Borthakur, A., Madhav, S., Ahamad, A., Kumar, A., Pal, D.B., Tiwary, D., & Mishra, P.K. (2020). Bioremediation: a sustainable approach for management of environmental contaminants. Abatement of Environmental Pollutants. https://doi.org/10.1016/B978-0-12-818095-2.00001-1

Slavov, A. K. (2017). General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review. Food Technol. Biotechnol. https://doi.org/10.17113/ftb.55.01.17.4520

Soares, B.C.V., Quitério, S.L., & Vendramel, S.M.R. (2019). Tratamento de efluentes na indústria de laticínios. Revista Indústria de Laticínios, n. 140, p. 98-101, 2019. Available at: Acesso: 26/03/2020.

Srivasrava, A.K., Rana, S.V.S., Mehrotra, T., & Singh, R. (2016). Characterization, and Immobilization of Bacterial Consortium for its Application in Degradation of Dairy Effluent. Journal of Pure and Applied Microbiology. v. 10, n. 3, p. 2199-2208. https://link.gale.com/apps/doc/A481650350/AONE?u=googlescholar&sid=bookmark-AONE&xid=cb4a89ff

Tchamango, S. R, Ngayo, K.W., Beilibi, P.D.B., Nkouam, F., & Ngassoum, M.B.. (2020). Treatment of dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes. Separation Science and Technology. https://doi.org/10.1080/01496395.2020.1748889

Teixeira, P.D., Silva, V.S., & Tenreiro, R. (2019). Integrated selection and identification of bacteria from polluted sites for biodegradation of lipids. International Microbiology. https://doi.org/10.1007/s10123-019-00109-w

Tsachev T. (1982). Dairy industry wastewater treatment. In: Industrial wastewater treatment. Sofia, Bulgaria: State Publishing House Technique; 1982. pp. 239–41 (in Bulgarian).

Un-Water, (2015).. United Nations Water. Compendium of Water Quality Regulatory Frameworks: Which Water for which use? Available at: Acess: 20/07/2020.

Wang, Y., & Serventi, L. (2019). Sustainability of dairy and soy processing: A review on wastewater recycling. Journal of Cleaner Production. v.237, p.117821. https://doi.org/10.1016/j.jclepro.2019.117821

WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. License: CC BY-NC-SA 3.0: ISBN 978-92-4-154995-0.

Descargas

Publicado

25/05/2022

Cómo citar

CARDOSO, N. L. L. .; SILVA, F. F.; SILVA, A. K. M.; RIBEIRO, J. A. T.; VALINHAS, R. V. e .; PENIDO, W. D.; SOUZA, I. B. S. de .; SILVA, J. A. da; GRANJEIRO, P. A.; MAGALHÃES, J. T. de; GONÇALVES, D. B. Uso de bacterias para la biorremediación de desechos lácteos: una vista panorámica . Research, Society and Development, [S. l.], v. 11, n. 7, p. e30311729830, 2022. DOI: 10.33448/rsd-v11i7.29830. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29830. Acesso em: 22 nov. 2024.

Número

Sección

Revisiones