Bioremediation of dairy wastewater using bacteria: a panoramic review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29830

Keywords:

Bioremediation; Bacteria; Dairy wastewater; Treatment; Effluents; Sustainable.

Abstract

The Bioremediation consists of applying microorganisms to reduce, eliminate or transform organic or inorganic polluting compounds into inert substances. Solid and liquid wastes are generated daily in industrial activities and, among the food processing industries, the dairy sector presents a large number of liquid effluents due to its extensive use of water in various activities and sectors. For an efficient treatment of effluents, it is essential to understand the microbiota of the wastewater, its biochemical characteristics and metabolic activity, as well as the origin of the polluting compounds. The growing demand for products derived from livestock and agricultural activity drives the search for environmental technologies capable of providing sustainable development. In this scenario, biotechnological studies and bioremediation applications are increasingly gaining ground both for environmental control and for application in value-added products. The purpose of this review is to present and discuss the most recent and used technologies for bioremediation of effluents from dairy industries using bacteria.

References

Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U. ur, Soares, B. C. V., Souza, S. L. Q., … & Cruz, A. G. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology. 2019. https://doi.org/10.1016/j.tifs.2019.04.003

Akansha, J., Nidheesh, P.V., Gopinath, A., Anupama, K.V., Kumar, M.S. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, v. 253, 2020. https://doi.org/10.1016/j.chemosphere.2020.126652

Alaa, F., Al-Challabi, H., & Rao, P. B. (2019). Isolation and identification of microbial consortia for biodegradability of dairy effluent. Research Journal of Life Sciences. v.5, p. 609.

Al-Wasify, R.S., Ali, M.N., & Hamed, S.R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Science & Technology. https://doi.org/10.2166/wst.2017.481

Amado, I. R., Vázquez, J.A., Pastrana, L., & Teixeira, J.A. (2016). Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry.v.198, p.54–61. https://doi.org/10.1016/j.foodchem.2015.11.062

Andrade, J.A., Augusto, F., & Jardim, I.C.S.F. (2010). Biorremediação de solos contaminados por petróleo e seus derivados. Ecletica Quimica, v. 35, n. 3, p. 17–43. https://doi.org/10.1590/S0100-46702010000300002

Arvanitoyannis, I. S., Tserkezou, P. (2008). Cereal Waste Management: Treatment Methods and Potential Uses of Treated Waste. Waste Management for the Food Industries (pp.629-702). https://doi.org/10.1016/B978-012373654-3.50013-4

Ashkuzzman.S.M, Forrestal P., Rrichards, K., & Fenton, O. (2019). Dairy industry-derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.05.025

Balaji, L., Chittoor, J.T., & Jayaraman, G. (2020). Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in the pretreatment of food industry effluents. Preparative Biochemistry & Biotechnology. https://doi.org/10.1080/10826068.2020.1734936

Behera, A. R., Dutta, K., Verma, P., Daverey, A., & Sahoo, D.K. (2019). High lipid accumulating bacteria isolated from dairy effluent scum grown on dairy wastewater as potential biodiesel feedstock. Journal of Environmental Management. v. 252, p. 10968. https://doi.org/10.1016/j.jenvman.2019.109686

Biswas, T., Chatterjee, D., Barman, S., Chakraborty, A., Halder, N., Banerjee, S., & Chaudhuri, S.R. (2019). Cultivable bacterial community analysis of dairy activated sludge for value addition to dairy wastewater. Microbiol. Biotechnol. Lett, v. 47, n. 4, p. 585–595. https://doi.org/10.4014/mbl.1901.01014

Boguniewicz-Zablocka, J., Klosok-Bazan, I., & Naddeo, V. (2019). Water quality and resource management in the dairy industry. Environmental Science Pollutant Research, v. 26, p. 1208-1216. https://doi.org/10.1007/s11356-017-0608-8

Borges, T.N., Costa, R.M., & Gontijo, H.M. (2019). Caracterização do efluente de uma indústria de laticínios: proposta de tratamento. Research, Society and Development, v. 8, n. 1. https://doi.org/10.33448/rsd-v8i1.742

Bosso, A., Tomal, A.A.B., Silva, J.B., & Suguimoto, H.H. (2019). β-Galactosidase production using cheese whey. Uniciências, v. 23, n. 1, p. 31-37, 2019. . https://doi.org/10.17921/1415-5141.2019v23n1p31-37

Britz, T. J, van Schalkwyk, C., & Hung, Y. (2006). Chapter one, Treatment of Dairy Processing Wastewater, Taylor & Francis, New York., 2006.

Britz, T. J., Lamprecht, C., & Sigge, G. O. (2008). Dealing with environmental issues. In: Britz, T. J.; Robinson, R.K. (coord). Advanced dairy science and technology. Oxford: Blackwell Publishing Ltd, cap. 2, p. 35-75. https://doi.org/10.1002/9780470697634.ch7

Cammarota, M. C., Teixeira G.A., & Freire, D. M. G. (2002). Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high-fat contents Article. Entomologia Experimentalis et Applicata, v. 103, n. 3, p. 239–248. https://doi.org/10.1023/A:1011973428489

Cetesb. Companhia de Tecnologia de Saneamento Ambiental. Guia técnico ambiental de produtos lácteos – Série P+L. Disponível em: Acess: 20/03/2020.

Chandra, R., Castillo-Zacarias, C., Delgado, P., & Parra-Saldívar, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production. v.183, p.1184–1196. https://doi.org/10.1016/j.jclepro.2018.02.124

Chandran, M., Ahmed, M. F., & Parthasarathi, N. (2014). A comparative study on the protease producing bacteria isolated from dairy effluents of Chennai region, identification, characterization, and application of enzyme in detergent formulation. Journal of Microbiol. v.16, p.41-46. Available at: http://www.envirobiotechjournals.com/article_abstract.php?aid=4870&iid=167&jid=1

Chrispim, M.C, Scholz, M., & Nolasco, M.A. (2020). A framework for resource recovery from wastewater treatment plants in megacities of developing countries. Environmental Research,2020. https://doi.org/10.1016/j.envres.2020.109745

Conama. Conselho Nacional Do Meio Ambiente. (2011). Resolução nº 430, de 13 de maio de 2011: Condições e padrões de lançamento de efluentes.

Conceição, A.A., Rêgo, A.P.B., Santana, H., Teixeira, I., & Matias, A.G.C. (2013). Tratamento De Efluentes Resultantes Do Processamento Da Mandioca E Seus Principais Usos. Revista Meio Ambiente e Sustentabilidade, v. 4, n. 2. https://doi.org/10.22292/mas.v4i2.206

Copam. Conselho Estadual de Política Ambiental. (2017). Deliberação normativa nº 217, de 06 de Dezembro de 2017: Classificação potencial poluidor de empreendimentos e atividades utilizadoras de recursos ambientais em Minas Gerais.

Costa, A. F. de S., Silva, J.R.R., Santos, R.C.M.M, Farias, C.B.B., Sarubbo, L. A., Jordão, R.C.C, & Salgueiro, A.A. (2007). Obtenção de consórcio de microrganismos a partir de amostra de petróleo. Revista Ciência & Tecnologia, v. 1, p. 1–7, 2007. Available at: http://www.unicap.br/revistas/revista_e/artigo1.pdf

Dias, F.F., Silva, C.V.A., Santos, A.F.M.S., Andrade, J.G.P., & Albuquerque, I.L.T. (2018). Treatment of effluents from the dairy industry by applying advanced oxidative process (H2O2/TiO2/UV). Scientific Journal GEAMA, v. 4, n. 3, p. 010-015. Available at: https://www.cabdirect.org/cabdirect/abstract/20193441900

Dinakar, D., & Mithran, A. (2019). Treatment of Dairy Waste Water by using Groundnut Shell as Low-Cost Adsorbent. (2019). International Research Journal of Engineering and Technology. Available at: https://www.irjet.net/archives/V6/i6/IRJET-V6I675.pdf

Dunoyer, A. T., Cuello, R.E.G., & Salinas, R.P. (2019). Biodegradation of dairy wastes using crude enzymatic extract of Yarrowia lipolytica ATCC 9773 Ambiente & Água - An Interdisciplinary Journal of Applied Science. https://doi.org/10.4136/ambi-agua.2448

El-Sesy, M.E. & Mustafa, M.M. (2020). Efficient of bacterial isolates in bio-treatment dairy industries wastewater. International Journal of Information Research and Review, v. 7, n. 1, p. 6680-6687. Available at: https://www.ijirr.com/sites/default/files/issues-pdf/3433.pdf

Fao. Food and Agriculture Organization of the United Nations. (2010) The wealth of waste: The economics of wastewater use in agriculture. Roma. ISBN: 978-92-5-106578-5. Available at: https://www.fao.org/3/i1629e/i1629e00.pdf

Faria, A. B. de C., Monteiro, P. H. R., Auer, C. G., & Angelo, A. C. (2017). Uso de ectomicorrizas na biorremediação florestal. Ciência Florestal, v. 27, n. 1, p. 21-29. https://doi.org/10.5902/1980509826444

Ferronat, N., & Torretta, V. (2020). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16061060

Figueiredo, T. C. F., Oliveira, R.B., Souza, L., & Alves, S.C. (2018). Caracterização físico-química dos efluentes de uma indústria de laticínios. v. 3, p. 599–609, 2015. https://doi.org/10.5151/chenpro-5erq-fq14

Francisco, W. C., De Queiroz, T. M. (2018). Biorremediação. Nucleus, v. 15, n. 1, p. 249-256. https://doi.org/10.3738/1982.2278.1700

Garcha, S., Verma, N., & Brar, S.K. (2016). Isolation characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge sample and evaluation of their biodegradability. Water Resources and Industry. v.16, p.19-28. https://doi.org/10.1016/j.wri.2016.10.002

Gasparin, F. G. M., Magri, A., Neves, A.F., & Celligoi, M.A.P.C. (2012). Produção de Lipase e Biossurfactante por Isolado de Efluente de Laticínio. BBR - Biochemistry and Biotechnology Reports, v. 1, n. 1, p. 28–31. https://doi.org/10.5433/2316-5200.2012v1n1p28

Gaur, N., Narasimhulu, K., & PydySetty, Y. (2018). Recent advances in the bioremediation of persistent organic pollutants and its effect on the environment. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.07.076

Gaylarde, C. C., Bellinaso, M. de L., & Manfio, G. P. (2005). Biorremediação. Biotecnologia Ciência & Desenvolvimento, v. 34, p. 36-43. Available at: https://edisciplinas.usp.br/pluginfile.php/4144372/mod_resource/content/1/Biorremediac%CC%A7a%CC%83o%20-%20Artigo%201.pdf

Goli, A., Shamiri, A., Khosroyar, S., Talaiekhozani, A., Sanaye, R., & Azizi, K. (2019). A Review on Different Aerobic and Anaerobic Treatment Methods in Dairy Industry Wastewater. Journal of Environmental Treatment Techniques. Available at: http://www.jett.dormaj.com/docs/Volume7/Issue%201/A%20Review%20on%20Different%20Aerobic%20and%20Anaerobic%20Treatment%20Methods%20of%20Dairy%20Industry%20Wastewater.pdf

Goud, B. S., Cha, H.L., Koyyada, G., & Kim, J.H. (2020). Augmented Biodegradation of Textile Azo Dye Efuents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Springer Nature. https://doi.org/10.1007/s00284-020-02202-0

Gulhane, V., & Shone, S.D. (2019). Treatment Efficiency Enhancement of Dairy Effluent by Bioaugmentation Using Bacterial Species. Proceedings of Sustainable Infrastructure Development & Management. https://dx.doi.org/10.2139/ssrn.3375406.

Halder, N., Gogoi, M., Sharmin, J., Gupta, M., Banerjee, S., Biswas, T., … Ray Chaudhuri, S. (2020). Microbial Consortium–Based Conversion of Dairy Effluent into Biofertilizer. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1), 04019039. https://doi.org/10.1061/(asce)hz.2153-5515.0000486

Janczukowicz, W., Zieliński, M., & Dębowski, M. (2008). Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Bioresource Technology, v. 99, n. 10, p. 4199-4205. https://doi.org/10.1016/j.biortech.2007.08.077

Jonas.R et al. Sam Houston State University. (2012). Modification of existing wastewater systems with substrate-supported biofilms. English Patent WO 2012/162530 A2. Nov 29.

Joshiba, G.J., Kumar, P.S., Femina, C.C., Jayashree, E., Racchana, R., & Sivanesan, S. (2019). Critical review on biological treatment strategies of dairy wastewater. Desalination and Water Treatment, v. 160, p, 94-109, 2019. https://doi.org/10.5004/dwt.2019.24194.

Justina, M. D., Kempka, A. P., & Skoronski, E. (2017). Tecnologias empregadas no tratamento de efluentes de laticínios do vale do Rio Braço do norte-SC. Revista em Agronegocio e Meio Ambiente, v. 10, n. 3, p. 809–824. https://doi.org/10.17765/2176-9168.2017v10n3p809-824

Kasmi, M., Elleuch, L., Dahmeni, A., Hambi, M., Trabelsi, I., & Snouss, M. (2018). Novel approach for the use of dairy industry wastes for bacterial growth media production. Journal of Environmental Management. v.212, p.176-185. https://doi.org/10.1016/j.jenvman.2018.01.073

Keffala, C., Zouhir, F., Abdallah, K.B.H., & Kammoun, S. (2017). Use of bacteria and yeast strains for dairy wastewater treatment. International Journal of Research in Engineering and Technology. v.6, p. 2321-7308. Available at: https://orbi.uliege.be/bitstream/2268/226062/1/IJRET20170603019.pdf

Lacerda, F., Navoni, J., & Amaral, V. (2019). Biorremediação: Educação em saúde e alternativas à poluição ambiental. p. 82. Available at: https://memoria.ifrn.edu.br/bitstream/handle/1044/1771/A%20biorremedia%c3%a7%c3%a3o.pdf?sequence=5&isAllowed=y

Leonel, L. V., Nascimento, E.G., Bertozzi, J., Vilas Bôas, L.A., & Vilas Bôas, G.T. (2010). Biorremediação do solo. Terra e Cultura, p. 52. Available at: http://periodicos.unifil.br/index.php/Revistateste/article/view/257%3E

M P, Prasad & Manjunath, K. (2011). Comparative study on biodegradation of lipid-rich wastewater using lipase-producing bacterial species. Indian Journal of Biotechnology. 10. 121-124. Available at: http://nopr.niscair.res.in/bitstream/123456789/10960/1/IJBT%2010%281%29%20121-124.pdf

Madhu, P.C. (2016). Utilization of Dairy Effluent for Food Grade Protease Production Using Bacillus sp. American Journal of Bioscience and Bioengineering. v.6, p.90-95. https://doi.org/10.11648/j.bio.20160406.15

Mallmann, V, Aragão, L.W.R., Fernandes, S.S.L., Fernandes, T.C.L., Aragão, R.F.R., & da Silva, R.C.L. (2010). The Advantages of Bioremediation in Environmental Quality. p. 12–15, 2010. http://dx.doi.org/10.17921/1415-6938.2019v23n1p12-15

Manisalidis, I., Stavropolou, E., Stavropolous, A. & Bezirtzoglou, E. (2020). Environmental, and Health Impacts of Air Pollution: A Review. Frontiers. 2020. https://doi.org/10.3389/fpubh.2020.00014

Mazzucotelli, C. A., Ponce, A.G., Kotlar, C.E., & Moreira, M. R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agro-industrial by-products and wastes. Food Sci. Technol. v.33, p.295-303. https://doi.org/10.1590/S0101-20612013005000038.

Moreira, F.D., Cerqueira, V.D., & Saraiva, C.B. (2020). Diagnóstico ambiental e avaliação de pontos críticos de indústria de laticínios de pequeno porte. Revista em Agronegócio e Meio Ambiente, v. 13, n. 319-332, jan./mar. https://doi.org/10.17765/2176-9168.2020v13n1p319-332

Oliveira Netto, A.P., Guerra, L.R.M., Silva, M.R.P., & Silva, R.F. (2015). Biorremediação vegetal do esgoto domiciliar: o caso da fossa verde em comunidades rurais do Alto Sertão Alagoano. Revista Produção e Desenvolvimento, v. 1, n. 3, p. 103–113. https://doi.org/10.32358/rpd.2015.v1.101

Otaibi, N. A., Bakir, E., & Afkar, E. (2020). Efficient alum, and iron supported on silica matrix as gel coagulants for advance the chemical treatment of dairy product effluents. Journal of Sol-Gel Science and Technology. https://doi.org/10.1007/s10971-019-05115-y

Porwal, H.J., Mane, A.V., & Velhal, S.G. (2015). Biodegradation of dairy effluent by using microbial Isolates obtained from activated sludge. Water Resources and Industry. v. 9, p. 1-15. https://doi.org/10.1016/j.wri.2014.11.002

Roccuzzo, S., Beckerman, A.P., & Trögl, J.. (2020). New perspectives on the bioremediation of endocrine-disrupting compounds from wastewater using algae, bacteria, and fungi based Technologies. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-02691-3

Sandaruwani, A., Kumarasinghe, C., Samarakoon, D., Ariyadasa, T. U., & Gunawardena, S. H. P. (2018). Investigation of the Efficiency of Dairy Wastewater Treatment Using Lipid-Degrading Bacterial Strains. Moratuwa Engineering Research Conference. https://doi.org/10.1109/MERCon.2018.8421973

Santos, F.F, Queiroz, R.C.S, & Neto, J.A.A. (2018). Evaluation of application of Cleaner Production techniques in the dairy industry in Southern Bahia. Gestão e Produção, v. 25, n. 1, p. 117-131. https://doi.org/10.1590/0104-530X2234-16

Silva, D. J. P. (2011). Resíduos Na Indústria De Laticínios. Série Sistema de Gestão Ambiental, p. 20. Available at: http://locus.ufv.br/handle/123456789/441

Silva, J. S., Santos, S.S., & Gomes, F. G. G. (2014). A biotecnologia como estratégias de reversão de áreas contaminadas por resíduos sólidos. p. 1361–1370. http://dx.doi.org/10.5902/2236117014943

Silva, M. B., & Rondon, J. N. (2013). Utilização De Fungo De Bambu Na Biorremediação De Solo Contaminado. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 10, n. 10, p. 2175–2184. https://doi.org/10.5902/223611707757

Silveira, S. M., et al. (2018). BIOPLUS - Desenvolvimento Biotecnológico Ltda. composição biorremediadora. Patent BR102016021893-4 A2. Nov 22.

Singh, P., Singh, V.K., Borthakur, A., Madhav, S., Ahamad, A., Kumar, A., Pal, D.B., Tiwary, D., & Mishra, P.K. (2020). Bioremediation: a sustainable approach for management of environmental contaminants. Abatement of Environmental Pollutants. https://doi.org/10.1016/B978-0-12-818095-2.00001-1

Slavov, A. K. (2017). General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review. Food Technol. Biotechnol. https://doi.org/10.17113/ftb.55.01.17.4520

Soares, B.C.V., Quitério, S.L., & Vendramel, S.M.R. (2019). Tratamento de efluentes na indústria de laticínios. Revista Indústria de Laticínios, n. 140, p. 98-101, 2019. Available at: Acesso: 26/03/2020.

Srivasrava, A.K., Rana, S.V.S., Mehrotra, T., & Singh, R. (2016). Characterization, and Immobilization of Bacterial Consortium for its Application in Degradation of Dairy Effluent. Journal of Pure and Applied Microbiology. v. 10, n. 3, p. 2199-2208. https://link.gale.com/apps/doc/A481650350/AONE?u=googlescholar&sid=bookmark-AONE&xid=cb4a89ff

Tchamango, S. R, Ngayo, K.W., Beilibi, P.D.B., Nkouam, F., & Ngassoum, M.B.. (2020). Treatment of dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes. Separation Science and Technology. https://doi.org/10.1080/01496395.2020.1748889

Teixeira, P.D., Silva, V.S., & Tenreiro, R. (2019). Integrated selection and identification of bacteria from polluted sites for biodegradation of lipids. International Microbiology. https://doi.org/10.1007/s10123-019-00109-w

Tsachev T. (1982). Dairy industry wastewater treatment. In: Industrial wastewater treatment. Sofia, Bulgaria: State Publishing House Technique; 1982. pp. 239–41 (in Bulgarian).

Un-Water, (2015).. United Nations Water. Compendium of Water Quality Regulatory Frameworks: Which Water for which use? Available at: Acess: 20/07/2020.

Wang, Y., & Serventi, L. (2019). Sustainability of dairy and soy processing: A review on wastewater recycling. Journal of Cleaner Production. v.237, p.117821. https://doi.org/10.1016/j.jclepro.2019.117821

WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. License: CC BY-NC-SA 3.0: ISBN 978-92-4-154995-0.

Downloads

Published

25/05/2022

How to Cite

CARDOSO, N. L. L. .; SILVA, F. F.; SILVA, A. K. M.; RIBEIRO, J. A. T.; VALINHAS, R. V. e .; PENIDO, W. D.; SOUZA, I. B. S. de .; SILVA, J. A. da; GRANJEIRO, P. A.; MAGALHÃES, J. T. de; GONÇALVES, D. B. Bioremediation of dairy wastewater using bacteria: a panoramic review. Research, Society and Development, [S. l.], v. 11, n. 7, p. e30311729830, 2022. DOI: 10.33448/rsd-v11i7.29830. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29830. Acesso em: 23 apr. 2024.

Issue

Section

Review Article