Efectos de la hidroxiapatita asociada al injerto de colágeno tipo I en la reparación ósea de defectos críticos en conejos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.30243

Palabras clave:

Hidroxiapatita; Colágeno; Hueso.

Resumen

El objetivo de esta investigación fue evaluar las influencias de un injerto óseo maleable compuesto por hidroxiapatita y colágeno tipo I en la formación ósea. Se prepararon tres sitios quirúrgicos de tamaño crítico en doce calvarias de conejos. El defecto de control se cumplió con el coágulo de sangre y los defectos experimentales se cumplieron con el injerto. La eutanasia ocurrió en tres tiempos: 4, 8 y 12 semanas después de los procedimientos quirúrgicos. Los especímenes fueron analizados en microscopios electrónicos de luz, fluorescencia y barrido. La evaluación cuantitativa se hizo por análisis histomorfométrico, para calcular el porcentaje de hueso nuevo formado y el área de las partículas de hidroxiapatita. Los resultados fueron sometidos a la prueba ANOVA de dos vías y post hoc de Tukey. La formación de hueso nuevo se aceleró en las primeras etapas del proceso de curación. Se observó una formación ósea más intensa en el lado del periostio que en el lado de la membrana de la duramadre en todos los grupos. Además, en los lados experimentales, el hueso nuevo rodeaba las partículas de hidroxiapatita con una cantidad mínima de células inflamatorias, lo que confirmó las propiedades de biocompatibilidad y osteoconducción de este material. Además de eso, las partículas de hidroxiapatita mostraron una absorción gradual y progresiva al mismo tiempo que se iba formando el hueso.

Citas

Aichelmann-Reidy, M. E., & Yukna, R. A. (1998) Bone replacement grafts. Dent Clin North Am 42: 491-503.

Araujo, M. G., Carmagnola, D., Berglundh, T., Thilander, B., & Lindhe, J. (2001) Orthodontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs. J Clin Periodontol 28: 73-80.

Araujo, M. G., Sonohara, M., Hayacibara, R., Cardaropoli, G., & Lindhe, J. (2002) Lateral ridge augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment in the dog. J Clin Periodontol 29: 1122-1131.

Arts, J. J., Gardeniers, J. W., Welten, M. L., Verdonschot, N., Schreurs, B. W., & Buma, P (2005) No negative effects of bone impaction grafting with bone and ceramic mixtures. Clin Orthop Relat Res 438: 239-247

Bauer, T. W., & Smith, S. T. (2002) Bioactive materials in orthopaedic surgery: overview and regulatory considerations. Clin Orthop Relat Res: 11-22.

Benic, G. I., Bienz, S. P., Song, Y. W., Cha, J. K., Hammerle, C. H. F., Jung, U. W., & Jung, R. E. (2022) Randomized controlled clinical trial comparing guided bone regeneration of peri-implant defects with soft-type block versus particulate bone substitutes: Six-month results of hard-tissue changes. Journal of clinical periodontology 49: 480-495.

Cardaropoli, G., Araujo, M., Hayacibara, R., Sukekava, F., & Lindhe, J. (2005) Healing of extraction sockets and surgically produced - augmented and non-augmented - defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol 32: 435-440.

Carvalho, P. S. P. J., I. R. G.; Barcelos, J. A.; & Castro, M. L. (2000) Implante de hidroxiapatita associada a gel de colágeno ou a microcolágeno em cavidades ósseas. Estudo morfológico em ratos. Revista da Dental Press de Biologia Oral 01: 31-36.

Chalmers, J., Gray, D. H., & Rush, J. (1975) Observations on the induction of bone in soft tissues. J Bone Joint Surg Br 57: 36-45.

Chase, S. W., & Herndon, C. H. (1955) The fate of autogenous and homogenous bone grafts. J Bone Joint Surg Am 37-A: 809-841.

Deeb, M., & Roszkowski, M. (1988) Hydroxyapatite granules and blocks as an extracranial augmenting material in rhesus monkeys. J Oral Maxillofac Surg 46: 33-40.

Faundez, A. A., Taylor, S., & Kaelin, A. J. (2006) Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report. Eur Spine J 15: 630-635.

Frame J (1987) Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int J Oral Maxillofac Surg 16: 642-655.

Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Nishiyama T, Mizuno K, Yoshiya S, & Kurosaka M (2005) Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones. Acta Orthop 76: 550-554.

Fujishiro Y, Hench L. L, & Oonishi H (1997) Quantitative rates of in vivo bone generation for Bioglass and hydroxyapatite particles as bone graft substitute. J Mater Sci Mater Med 8: 649-652.

Giannoudis, P. V., Dinopoulos, H, & Tsiridis E (2005) Bone substitutes: an update. Injury 36 Suppl 3: S20-27

Goldberg VM, & Stevenson S (1987) Natural history of autografts and allografts. Clin Orthop Relat Res: 7-16.

Gosain, A. K., Riordan, P. A., Song, L., Amarante, M. T., Kalantarian, B., Nagy, P. G., Wilson, C. R., Toth, J. M., & McIntyre, B. L. (2005) A 1-year study of hydroxyapatite-derived biomaterials in an adult sheep model: III. Comparison with autogenous bone graft for facial augmentation. Plast Reconstr Surg 116: 1044-1052.

Gosain, A. K., Song, L., Riordan, P., Amarante, M. T., Nagy, P. G., Wilson, C. R., Toth, J. M., & Ricci, J. L. (2002) A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg 109: 619-630.

.

Haas R, Donath K, Fodinger M, & Watzek G (1998) Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clin Oral Implants Res 9: 107-116.

Hallman M, Cederlund A, Lindskog S, Lundgren S, & Sennerby L (2001) A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 12: 135-143.

Harvey, W. K., Pincock, J. L., Matukas, V. J., & Lemons, J. E. (1985) Evaluation of a subcutaneously implanted hydroxyapatite-avitene mixture in rabbits. J Oral Maxillofac Surg 43: 277-280.

Holmes R. E, Wardrop R. W, & Wolford L. M (1988) Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings. J Oral Maxillofac Surg 46: 661-671.

Hsu F. Y, Tsai S. W, Lan C. W, Wang Y. J (2005) An in vivo study of a bone grafting material consisting of hydroxyapatite and reconstituted collagen. J Mater Sci Mater Med 16: 341-345.

Indovina A, Jr., & Block M. S (2002) Comparison of 3 bone substitutes in canine extraction sites. J Oral Maxillofac Surg 60: 53-58.

Ishikawa H, Koshino T, Takeuchi R, & Saito T (2001) Effects of collagen gel mixed with hydroxyapatite powder on interface between newly formed bone and grafted achilles tendon in rabbit femoral bone tunnel. Biomaterials 22: 1689-1694.

Janjua O. S, Qureshi S. M, Shaikh M. S, Alnazzawi A, Rodriguez-Lozano F. J, Pecci-Lloret M. P, Zafar M. S (2022) Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. International journal of environmental research and public health 19

Jarcho M (1992) Retrospective analysis of hydroxyapatite development for oral implant applications. Dent Clin North Am 36: 19-26.

Jensen S. S, Broggine N, Hjorting-Hensen E, Schenk R, & Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and b-tricalcium phosphate. A histologic and histomorphometric study in tha mandibles of minipigs. Clin Oral Implants Res 17: 237-243.

Klinge B, Alberius P, Isaksson S, & Jonsson J (1992) Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg 50: 241-249.

Kramer I. R. H., Killey H. C, & Wright H. C (1968) A histological and radiological comparison of the healing of defects in the rabbit calvarium with and without implanted heterogeneous anorganic bone. Arch Oral Biol 13: 1095-1104.

Lew D, Farrell B, Bardach J, & Keller J (1997) Repair of craniofacial defects with hydroxyapatite cement. J Oral Maxillofac Surg 55: 1441-1449; discussion 1449-1451.

Li H, Zou X, Woo C, Ding M, Lind M, & Bunger C (2005) Experimental anterior lumbar interbody fusion with an osteoinductive bovine bone collagen extract. Spine 30: 890-896.

Lu J, Wang Z, Zhang H, Xu W, Zhang C, Yang Y, Zheng X, & Xu J (2022) Bone Graft Materials for Alveolar Bone Defects in Orthodontic Tooth Movement. Tissue engineering. Part B, Reviews 28: 35-51

Mehlisch D. R (1989) Collagen/hydroxylapatite implant for augmenting deficient alveolar ridges: a 24-month clinical and histologic summary. Oral Surg Oral Med Oral Pathol 68: 505-514, discussion 514-506.

Minabe M, Sugaya A, Satou H, Tamura T, Ogawa Y, Hori T, & Watanabe Y (1988) Histological study of the hydroxyapatite-collagen complex implants in periodontal osseous defects in dogs. J Periodontol 59: 671-678.

Nishikawa T, Masuno K, Tominaga K, Koyama Y, Yamada T, Takakuda K, Kikuchi M, Yanaka J, & Tanaka A (2005) Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone. Implant Dent 14: 252-260.

Oliveira R. C., Sicca C. M., Silva T. L., Cestari T. M., Kina J. R., Oliveria D. T., Buzalaf M. A. R., Taga R, Taga M. E., & Granjeiro J. M. (2003) Histological and biochemical analysis of cell responses to bovine cortical bone grafting previosly submitted to high temperatures. Effect off the temperature on xenograft preparation. Rev Bras Ortop 38.

Parrish F. F (1966) Treatment of bone tumors by total excision and replacement with massive autologous and homologous grafts. J Bone Joint Surg Am 48: 968-990.

Pettis G. Y, Kaban L. B, & Glowacki J (1990) Tissue response to composite ceramic hydroxyapatite/demineralized bone implants. J Oral Maxillofac Surg 48: 1068-1074.

Rezende M, Mesquita I, Ribak S, Dalapria R, Toledo C, & Andrade D (1996) Nova técnica para obtenção de enxerto de osso esponjoso Estudo anátomo-clínico*. Revista Brasileira de Ortopedia 31: 419-423

Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17: 31-35.

Rodrigues C. V. M, Serricella P, Linhares A. B. R., Guerdes, R. M., Borojevic R, Rossi M. A., Duarte M. E. L., & Farina M (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24: 4987-4997.

Sculean A, Chiantella G. C, Windisch P, Arweiler N. B, Brecx M, & Gera I (2005) Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). J Clin Periodontol 32: 720-724.

Silva R. V, Camilli J. A, Bertran C. A, & Moreira N. H (2005) The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 34: 178-184.

Tachibana Y, Ninomiya S, Kim Y. T, & Sekikawa M (2003) Tissue response to porous hydroxyapatite ceramic in the human femoral head. J Orthop Sci 8: 549-553.

Taylor T. D, & Helfrick J. F (1989) Technical considerations in mandibular ridge reconstruction with collagen/hydroxylapatite implants. J Oral Maxillofac Surg 47: 422-425.

Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, & Schlegel K. A (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63: 1626-1633

Urist MR (1965) Bone: formation by autoinduction. Science 150: 893-899.

Wiedmann-Al-Ahmad M, Gutwald R, Gellrich N. C, Hubner U, & Schmelzeisen R (2005) Search for ideal biomaterials to cultivate human osteoblast-like cells for reconstructive surgery. J Mater Sci Mater Med 16: 57-66.

Wong R. K, Hagg E. U, Rabie A. B, & Lau D. W (2002) Bone induction in clinical orthodontics: a review. Int J Adult Orthodon Orthognath Surg 17: 140-149.

Descargas

Publicado

31/05/2022

Cómo citar

BERTOLI , F. M. de P. .; GIL , L. de M. .; ANDRADE , L. R. de .; PITHON, M. M.; BORDINI JÚNIOR , J.; NOJIMA, M. da C. G. . Efectos de la hidroxiapatita asociada al injerto de colágeno tipo I en la reparación ósea de defectos críticos en conejos. Research, Society and Development, [S. l.], v. 11, n. 7, p. e45411730243, 2022. DOI: 10.33448/rsd-v11i7.30243. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30243. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud