Tolerancia y capacidad fitorremediadora de la Lemna minor en medio acuoso contaminado por la Amoxicilina
DOI:
https://doi.org/10.33448/rsd-v11i7.30251Palabras clave:
Antibiótico; Lentejas; Estrés; Tolerancia.Resumen
Este estudio tiene como objetivo evaluar el comportamiento y eficacia de la planta acuática Lemna minor como capacidad fitorremediadora sobre el antibiótico amoxicilina. Los experimentos se realizaron mediante Planificación Rotacional Compuesta Central (PRCC) y un estudio cinético. Los experimentos realizados por PRCC se realizaron en pocillos de cultivo durante un periodo de contacto de 5 días. Se estudiaron como variables independientes la concentración de amoxicilina en el medio acuoso, la cantidad de masa vegetal y el pH de la solución. Las variables dependientes medidas fueron amoxicilina remanente en solución, tolerancia de las plantas a la mortalidad o clonación de frondas y, para el estrés, relación clorofila-a/clorofila-b. Un estudio cinético determinó la velocidad de eliminación del antibiótico en el medio acuoso. Como la única variable independiente significativa fue la concentración de Amoxicilina, la mejor condición experimental obtenida por PRCC se consideró aquella con mayor nivel de remoción de Amoxicilina (92%) - el medio acuoso con concentración de fármaco a 2,0 mg L-1 y pH 7,0. Se escogieron 5 g de masa húmeda de L. minor por cada 10 mL de solución, ya que esta variable independiente no fue significativa. No hubo variación en el pH de la solución y el estrés de la planta en el estudio cinético. Sin embargo, hubo una eliminación de amoxicilina del 80% después del séptimo día. Se considera que, en condiciones de baja carga antibiótica, la planta acuática Lemna minor presenta capacidad fitorremediadora para el antibiótico amoxicilina.
Citas
Abd, I. N., & Mohammed-Ridha, M. J. (2020). Simultaneous adsorption of tetracycline and amoxicillin by cladophora and spirulina algae biomass. Iraqi Journal of Agricultural Sciences, 52(5), 1290–1303.
Alkimin, G. D., Daniel, D., Frankenbach, S., Serôdio, J., Soares, A. M. V. M., Barata, C., & Nunes, B. (2019). Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. Science of the Total Environment, 657, 926–937. https://doi.org/10.1016/j.scitotenv.2018.12.002
Driscoll, S. P., Prins, A., Olmos, E., & Kunert, K. J. (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany, 57(2), 381–390. https://doi.org/10.1093/jxb/erj030
Feng, L., Cheng, Y., Zhang, Y., Li, Z., Yu, Y., Feng, L., Zhang, S., & Xu, L. (2020). Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environmental Research, 185, 109386. https://doi.org/10.1016/j.envres.2020.109386
Garcia-Rodríguez, A., Matamoros, V., Fontàs, C., & Salvadó, V. (2015). The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. International Journal of Environmental Science and Technology, 12, 2327–2338. https://doi.org/10.1007/s13762-014-0632-x
Hu, H., Zhou, Q., Li, X., Lou, W., Du, C., Teng, Q., Zhang, D., Liu, H., Zhon, Y., & Yang, C. (2019). Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology, 291, 121853. https://doi.org/10.1016/j.biortech.2019.121853
Jiao, L., Zhong, N., Zhao, X., Ma, S., Fu, X., & Dong, D. (2020). Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. Trends in Analytical Chemistry, 127, 115892. https://doi.org/10.1016/j.trac.2020.115892
Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., & Oelgemöller, M. (2015). Applied Catalysis B : Environmental Titanium dioxide / zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. “Applied Catalysis B, Environmental,” 166–167, 45–55. https://doi.org/10.1016/j.apcatb.2014.11.001
Li, Y., Lian, J., Wu, B., Zou, H., & Tan, S. K. (2020). Phytoremediation of pharmaceutical-contaminated wastewater: Insights into rhizobacterial dynamics related to pollutant degradation mechanisms during plant life cycle. Chemosphere, 253, 126681. https://doi.org/10.1016/j.chemosphere.2020.126681
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01
Lima, M. L., Luís, S., Poggio, L., Aragonés, J. I., Courtier, A., Roig, B., & Calas-Blanchard, C. (2020). The importance of household pharmaceutical products disposal and its risk management: Example from Southwestern Europe. Waste Management, 104, 139–147. https://doi.org/10.1016/j.wasman.2020.01.008
Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., van, van P., John, O. H., & Marcel A.K., J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359
Miner, N. A., Mulberry, G. K., Starks, A. N., Powers-Prather, A., Entrup, M., Armstrong, M., & Maida, B. (1995). Identification of possible artifacts in the association of official analytical chemists sporicidal test. Applied and Environmental Microbiology, 61(4), 1658–1660. https://doi.org/10.1128/aem.61.4.1658-1660.1995
Moreira, N. F. F., Orge, C. A., Ribeiro, A. R., Faria, J. L., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Research, 15(87), 87–96. https://doi.org/10.1016/j.watres.2015.08.059
Nunes, B., Veiga, V., Frankenbach, S., Serôdio, J., & Pinto, G. (2019). Evaluation of physiological changes induced by the fluoroquinolone antibiotic ciprofloxacin in the freshwater macrophyte species Lemna minor and Lemna gibba. Environmental Toxicology and Pharmacology, 72(January), 103242. https://doi.org/10.1016/j.etap.2019.103242
Reinhold, D., Vishwanathan, S., Park, J. J., Oh, D., & Saunders, F. M. (2010). Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere, 80(7), 687–692. https://doi.org/10.1016/j.chemosphere.2010.05.045
Sasmaz, M., Öbek, E., & Sasmaz, A. (2019). Bioaccumulation of cadmium and thallium in Pb-Zn tailing waste water by Lemna minor and Lemna gibba. Applied Geochemistry, 100(August 2018), 287–292. https://doi.org/10.1016/j.apgeochem.2018.12.011
Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H., & Lee, S.-M. (2020). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environmental Technology & Innovation, 17, 100529. https://doi.org/10.1016/j.eti.2019.100529
Shi, W., Wang, L., Roussea, D. P. L., & Lens, P. N. L. (2010). Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17(4), 824–833. https://doi.org/10.1007/s11356-010-0301-7
Silva, D. M., Lizieri, C., & Oliveira Júnior, E. S. (2021). Plantas aquáticas em ecotecnologias: perspectivas para fitorremediação de ferro e manganês. Research, Society and Development, 10(3), e29510313320. https://doi.org/10.33448/rsd-v10i3.13320
Silva, J. F. da. (2012). Prospecção de plantas fitorremediadoras em solos contaminados por metais pesados. Universidade Federal do Amazonas.
Steet, J. A., & Tong, C. H. (2006). Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. Journal of Food Science, 61(5), 924–928. https://doi.org/10.1111/j.1365-2621.1996.tb10903.x
Streit, N. M., Canterle, L. P., Canto, M. W. do, & Hecktheuer, L. H. H. (2005). As clorofilas. Ciência Rural, 35(3), 748–755. https://doi.org/10.1590/s0103-84782005000300043
Taiz, L., & Zeiger, E. (2004). Fisiologia Vegetal (Artmed (ed.); 3a ed.).
Ul-Ain, N., Anis, I., Ahmed, F., Shah, M. R., Parveen, S., Faizi, S., & Ahmed, S. (2018). Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sensors and Actuators B: Chemical, 265, 617–624. https://doi.org/10.1016/j.snb.2018.03.079
Wang, Y., Chen, C., Zhou, D., Xiong, H., Zhou, Y., Dong, S., & Rittmann, B. E. (2019). Chemosphere Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. Chemosphere, 237, 124491. https://doi.org/10.1016/j.chemosphere.2019.124491
Xiao, F., Feng, L.-J., Sun, X.-D., Wang, Y., Wang, Z.-W., Zhu, F.-P., & Yuan, X.-Z. (2022). Do Polystyrene Nanoplastics Have Similar Effects on Duckweed ( Lemna minor L.) at Environmentally Relevant and Observed-Effect Concentrations? . Environmental Science & Technology, 56(7), 4071–4079. https://doi.org/10.1021/acs.est.1c06595
Yahia, B., Faouzi, S., Ahmed, C., & Mohamed, T. (2022). A new hybrid process for Amoxicillin elimination by combination of adsorption and photocatalysis on ( CuO / AC ) under solar irradiation. Journal of Molecular Structure, 1261, 132769. https://doi.org/10.1016/j.molstruc.2022.132769
Zhang, Y., Wang, J., Lu, J., & Wu, J. (2020). Antibiotic resistance genes might serve as new indicators for wastewater contamination of coastal waters: Spatial distribution and source apportionment of antibiotic resistance genes in a coastal bay. Ecological Indicators, 114, 106299. https://doi.org/10.1016/j.ecolind.2020.106299
Zhao, F., Chen, L., Yen, H., Li, G., Sun, L., & Yang, L. (2020). An innovative modeling approach of linking land use patterns with soil antibiotic contamination in peri-urban areas. Environment International, 134, 105327. https://doi.org/10.1016/j.envint.2019.105327
Zhao, F., Yan, L., Che, L., Xiang, Q., Li, S., Sun, L., Yu, X., & Fang, L. (2019). Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. Journal of Environmental Sciences, 79, 200–212. https://doi.org/10.1016/j.jes.2018.11.024
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Kaueli Aline Cerbaro; Raquel Dalla Costa da Rocha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.