Tolerância e capacidade fitorremediadora do Lemna minor em meio aquoso contaminado por Amoxicilina

Autores

DOI:

https://doi.org/10.33448/rsd-v11i7.30251

Palavras-chave:

Antibiótico; Lentilhas; Estresse; Tolerância.

Resumo

Este estudo tem como objetivo avaliar o comportamento e a eficácia da planta aquática Lemna minor como potencial fitorremediador sobre o antibiótico amoxicilina. Os experimentos foram conduzidos através do Planejamento Composto Central Rotacional (PCCR) e um estudo cinético. Os experimentos realizados pelo PCCR foram realizados em poços de cultura durante um período de contato de 5 dias. A concentração de amoxicilina no meio aquoso, a quantidade de massa vegetal e o pH da solução foram estudados como variáveis independentes. As variáveis dependentes medidas foram a amoxicilina remanescente na solução, a tolerância da planta à mortalidade ou clonagem de frondes e, para estresse, relação clorofila-a/clorofila-b. Um estudo cinético determinou a taxa de remoção do antibiótico no meio aquoso. Como a única variável independente significativa foi a concentração de Amoxicilina, a melhor condição experimental obtida pelo PCCR foi considerada aquela com maior nível de remoção de Amoxicilina (92%) - o meio aquoso com concentração do fármaco em 2,0 mg L-1 e pH 7,0. Foram escolhidos 5 g de massa úmida de L. minor para cada 10 mL de solução, pois essa variável independente não foi significativa. Não houve variação do pH da solução e do estresse da planta no estudo cinético. No entanto, houve remoção de amoxicilina de 80% após o sétimo dia. Considera-se que, em condições de baixa carga antibiótica, a planta aquática Lemna minor apresenta capacidade fitorremediadora para o antibiótico amoxicilina.

Referências

Abd, I. N., & Mohammed-Ridha, M. J. (2020). Simultaneous adsorption of tetracycline and amoxicillin by cladophora and spirulina algae biomass. Iraqi Journal of Agricultural Sciences, 52(5), 1290–1303.

Alkimin, G. D., Daniel, D., Frankenbach, S., Serôdio, J., Soares, A. M. V. M., Barata, C., & Nunes, B. (2019). Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. Science of the Total Environment, 657, 926–937. https://doi.org/10.1016/j.scitotenv.2018.12.002

Driscoll, S. P., Prins, A., Olmos, E., & Kunert, K. J. (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany, 57(2), 381–390. https://doi.org/10.1093/jxb/erj030

Feng, L., Cheng, Y., Zhang, Y., Li, Z., Yu, Y., Feng, L., Zhang, S., & Xu, L. (2020). Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environmental Research, 185, 109386. https://doi.org/10.1016/j.envres.2020.109386

Garcia-Rodríguez, A., Matamoros, V., Fontàs, C., & Salvadó, V. (2015). The influence of Lemna sp. and Spirogyra sp. on the removal of pharmaceuticals and endocrine disruptors in treated wastewaters. International Journal of Environmental Science and Technology, 12, 2327–2338. https://doi.org/10.1007/s13762-014-0632-x

Hu, H., Zhou, Q., Li, X., Lou, W., Du, C., Teng, Q., Zhang, D., Liu, H., Zhon, Y., & Yang, C. (2019). Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology, 291, 121853. https://doi.org/10.1016/j.biortech.2019.121853

Jiao, L., Zhong, N., Zhao, X., Ma, S., Fu, X., & Dong, D. (2020). Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. Trends in Analytical Chemistry, 127, 115892. https://doi.org/10.1016/j.trac.2020.115892

Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., & Oelgemöller, M. (2015). Applied Catalysis B : Environmental Titanium dioxide / zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. “Applied Catalysis B, Environmental,” 166–167, 45–55. https://doi.org/10.1016/j.apcatb.2014.11.001

Li, Y., Lian, J., Wu, B., Zou, H., & Tan, S. K. (2020). Phytoremediation of pharmaceutical-contaminated wastewater: Insights into rhizobacterial dynamics related to pollutant degradation mechanisms during plant life cycle. Chemosphere, 253, 126681. https://doi.org/10.1016/j.chemosphere.2020.126681

Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

Lima, M. L., Luís, S., Poggio, L., Aragonés, J. I., Courtier, A., Roig, B., & Calas-Blanchard, C. (2020). The importance of household pharmaceutical products disposal and its risk management: Example from Southwestern Europe. Waste Management, 104, 139–147. https://doi.org/10.1016/j.wasman.2020.01.008

Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., van, van P., John, O. H., & Marcel A.K., J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359

Miner, N. A., Mulberry, G. K., Starks, A. N., Powers-Prather, A., Entrup, M., Armstrong, M., & Maida, B. (1995). Identification of possible artifacts in the association of official analytical chemists sporicidal test. Applied and Environmental Microbiology, 61(4), 1658–1660. https://doi.org/10.1128/aem.61.4.1658-1660.1995

Moreira, N. F. F., Orge, C. A., Ribeiro, A. R., Faria, J. L., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Research, 15(87), 87–96. https://doi.org/10.1016/j.watres.2015.08.059

Nunes, B., Veiga, V., Frankenbach, S., Serôdio, J., & Pinto, G. (2019). Evaluation of physiological changes induced by the fluoroquinolone antibiotic ciprofloxacin in the freshwater macrophyte species Lemna minor and Lemna gibba. Environmental Toxicology and Pharmacology, 72(January), 103242. https://doi.org/10.1016/j.etap.2019.103242

Reinhold, D., Vishwanathan, S., Park, J. J., Oh, D., & Saunders, F. M. (2010). Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere, 80(7), 687–692. https://doi.org/10.1016/j.chemosphere.2010.05.045

Sasmaz, M., Öbek, E., & Sasmaz, A. (2019). Bioaccumulation of cadmium and thallium in Pb-Zn tailing waste water by Lemna minor and Lemna gibba. Applied Geochemistry, 100(August 2018), 287–292. https://doi.org/10.1016/j.apgeochem.2018.12.011

Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H., & Lee, S.-M. (2020). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environmental Technology & Innovation, 17, 100529. https://doi.org/10.1016/j.eti.2019.100529

Shi, W., Wang, L., Roussea, D. P. L., & Lens, P. N. L. (2010). Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17(4), 824–833. https://doi.org/10.1007/s11356-010-0301-7

Silva, D. M., Lizieri, C., & Oliveira Júnior, E. S. (2021). Plantas aquáticas em ecotecnologias: perspectivas para fitorremediação de ferro e manganês. Research, Society and Development, 10(3), e29510313320. https://doi.org/10.33448/rsd-v10i3.13320

Silva, J. F. da. (2012). Prospecção de plantas fitorremediadoras em solos contaminados por metais pesados. Universidade Federal do Amazonas.

Steet, J. A., & Tong, C. H. (2006). Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. Journal of Food Science, 61(5), 924–928. https://doi.org/10.1111/j.1365-2621.1996.tb10903.x

Streit, N. M., Canterle, L. P., Canto, M. W. do, & Hecktheuer, L. H. H. (2005). As clorofilas. Ciência Rural, 35(3), 748–755. https://doi.org/10.1590/s0103-84782005000300043

Taiz, L., & Zeiger, E. (2004). Fisiologia Vegetal (Artmed (ed.); 3a ed.).

Ul-Ain, N., Anis, I., Ahmed, F., Shah, M. R., Parveen, S., Faizi, S., & Ahmed, S. (2018). Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sensors and Actuators B: Chemical, 265, 617–624. https://doi.org/10.1016/j.snb.2018.03.079

Wang, Y., Chen, C., Zhou, D., Xiong, H., Zhou, Y., Dong, S., & Rittmann, B. E. (2019). Chemosphere Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. Chemosphere, 237, 124491. https://doi.org/10.1016/j.chemosphere.2019.124491

Xiao, F., Feng, L.-J., Sun, X.-D., Wang, Y., Wang, Z.-W., Zhu, F.-P., & Yuan, X.-Z. (2022). Do Polystyrene Nanoplastics Have Similar Effects on Duckweed ( Lemna minor L.) at Environmentally Relevant and Observed-Effect Concentrations? . Environmental Science & Technology, 56(7), 4071–4079. https://doi.org/10.1021/acs.est.1c06595

Yahia, B., Faouzi, S., Ahmed, C., & Mohamed, T. (2022). A new hybrid process for Amoxicillin elimination by combination of adsorption and photocatalysis on ( CuO / AC ) under solar irradiation. Journal of Molecular Structure, 1261, 132769. https://doi.org/10.1016/j.molstruc.2022.132769

Zhang, Y., Wang, J., Lu, J., & Wu, J. (2020). Antibiotic resistance genes might serve as new indicators for wastewater contamination of coastal waters: Spatial distribution and source apportionment of antibiotic resistance genes in a coastal bay. Ecological Indicators, 114, 106299. https://doi.org/10.1016/j.ecolind.2020.106299

Zhao, F., Chen, L., Yen, H., Li, G., Sun, L., & Yang, L. (2020). An innovative modeling approach of linking land use patterns with soil antibiotic contamination in peri-urban areas. Environment International, 134, 105327. https://doi.org/10.1016/j.envint.2019.105327

Zhao, F., Yan, L., Che, L., Xiang, Q., Li, S., Sun, L., Yu, X., & Fang, L. (2019). Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. Journal of Environmental Sciences, 79, 200–212. https://doi.org/10.1016/j.jes.2018.11.024

Downloads

Publicado

31/05/2022

Como Citar

CERBARO, K. A. .; ROCHA, R. D. C. da . Tolerância e capacidade fitorremediadora do Lemna minor em meio aquoso contaminado por Amoxicilina. Research, Society and Development, [S. l.], v. 11, n. 7, p. e45711730251, 2022. DOI: 10.33448/rsd-v11i7.30251. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30251. Acesso em: 22 dez. 2024.

Edição

Seção

Engenharias