Evaluación química y actividad biológica de compuestos bioactivos de Campomanesia xanthocarpa Berg

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.31561

Palabras clave:

Guabiroba; Alimentos Funcionais; Anti-inflamación; Anticáncer.

Resumen

Campomanesia xanthocarpa Berg. (Myrtaceae), también conocida como “guabiroba”, está ampliamente distribuida en el sur y sureste de Brasil y ha sido usado por las familias locales como medicamento popular para el tratamiento de diversas enfermedades. Este trabajo tiene como objetivo evaluar los compuestos bioactivos de los frutos y hojas de guabiroba, tales como flavonoides, carotenoides, clorofila, fenoles totales, taninos y cumarinas. También se investigó el efecto biológico de diferentes partes de C. xanthocarpa (hoja y pulpa) en cuanto a actividad inmunomoduladora en macrófagos RAW 264.7 y efectos anticancerígenos en células H295R adrenocorticales bajo diferentes concentraciones y protocolos de extracción. Se produjeron extractos de hojas y pulpa de guabiroba utilizando etanol al 70% y n-hexano como solvente por agitación magnética, así como extractos etanólicos de hojas y pulpa obtenidos por extracción por reflujo térmico. La mayoría de los compuestos bioactivos se encontraron en las hojas y no en la pulpa de la fruta. Los ensayos in vitro mostraron que la extracción de hojas con hexano afectó el ensayo de viabilidad en la línea celular adrenocortical H295R, mientras que la pulpa extraída con hexano activó el linaje de macrófagos RAW 264.7. Por lo tanto, se ha demostrado que las hojas y la pulpa de C. xanthocarpa afectan a los macrófagos y líneas de células adrenocorticales de manera dependiente de la dosis.

Citas

Alves, A. M., Alves, M. S. O., Fernandes, T. de O., Naves, R. V., & Naves, M. M. V. (2013). Physical and chemical characterization, total phenolics and antioxidant activity of the gabiroba pulp and residue. Revista Brasileira de Fruticultura. 35(3), 837-844. https://doi.org/10.1590/S0100-29452013000300021

Amaral, S. da C., Barbieri, S. F., Ruthes, A. C., Bark, J. M., Brochado Winnischofer, S. M., & Silveira, J. L. M. (2019). Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydrate Polymers, 224(August), 115140. https://doi.org/10.1016/j.carbpol.2019.115140

Annadurai, G., Masilla, B., Jothiramshekar, S., Palanisami, E., Puthiyapurayil, S., & Parida, A. (2012). Antimicrobial, antioxidant, anticancer activities of Syzygium caryophyllatum (L.) Alston. International Journal of Green Pharmacy. 6, 285-288. https://doi.org/10.4103/0973-8258.108210

Barnes, P. J. (1994). Cytokines as mediators of chronic asthma. American Journal of Respiratory and Critical Care Medicine. 150, S42-49. https://doi.org/10.1164/ajrccm/150.5_pt_2.s42

Batista, Â. G., da Silva, J. K., Betim Cazarin, C. B., Biasoto, A. C. T., Sawaya, A. C. H. F., Prado, M. A., & Maróstica Júnior, M. R. (2017). Red-jambo (Syzygium malaccense): Bioactive compounds in fruits and leaves. LWT - Food Science and Technology. 76(B), 284-291. https://doi.org/10.1016/j.lwt.2016.05.013

Bowdish, D. M. E., Loffredo, M. S., Mukhopadhyay, S., Mantovani, A., & Gordon, S. (2007). Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes and Infection. 9(14-15), 1680-1687. https://doi.org/10.1016/j.micinf.2007.09.002

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. In LWT - Food Science and Technology. 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M., & Velić, D. (2007). Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering. 81(1), 236-242. https://doi.org/10.1016/j.jfoodeng.2006.10.027

Campos, J. F., de Toledo Espindola, P. P., Torquato, H. F. V., Vital, W. D., Justo, G. Z., Silva, D. B., Carollo, C. A., Souza, K. de P., Paredes-Gamero, E. J., & dos Santos, E. L. (2017). Leaf and root extracts from Campomanesia adamantium (Myrtaceae) promote apoptotic death of leukemic cells via activation of intracellular calcium and caspase-3. Frontiers in Pharmacology. 8, 466. https://doi.org/10.3389/fphar.2017.00466

Carneiro, R. G. S., Castro, A. C., & Isaias, R. M. S. (2014). Unique histochemical gradients in a photosynthesis-deficient plant gall. South African Journal of Botany. 92, 97-104. https://doi.org/10.1016/j.sajb.2014.02.011

Chai, J., Jiang, P., Wang, P., Jiang, Y., Li, D., Bao, W., Liu, B., Liu, B., Zhao, L., Norde, W., Yuan, Q., Ren, F., & Li, Y. (2018). The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends in Food Science and Technology, 78(June), 144–154. https://doi.org/10.1016/j.tifs.2018.06.003

Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. In Nature. 420(6917), 860-867. https://doi.org/10.1038/nature01322

Coutinho, I. D., Coelho, R. G., Kataoka, V. M. F., Honda, N. K., Silva, J. R. M., Vilegas, W., & Cardoso, C. A. L. (2008). Determination of phenolic compounds and evaluation of antioxidant capacity of Campomanesia adamantium leaves. Ecletica Quimica. 33, 53-60. https://doi.org/10.1590/S0100-46702008000400007

Cunha, E. B. B., DA SILVA, N. F., de Lima, J., Serrato, J. A., Aita, C. A. M., & Herai, R. H. (2020). Leaf extracts of campomanesia xanthocarpa positively regulates atherosclerotic-related protein expression. Anais Da Academia Brasileira de Ciencias, 92(4), 1–13. https://doi.org/10.1590/0001-3765202020191486

de Melo, L. V., & Sawaya, A. C. H. F. (2015). UHPLC–MS quantification of coumarin and chlorogenic acid in extracts of the medicinal plants known as guaco (Mikania glomerata and mikania laevigata). Brazilian Journal of Pharmacognosy. 25, 105-110. https://doi.org/10.1016/j.bjp.2015.02.005

de Oliveira Fernandes, T., de Ávila, R. I., de Moura, S. S., de Almeida Ribeiro, G., Naves, M. M. V., & Valadares, M. C. (2015). Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity. Toxicology Reports. 2, 184-193. https://doi.org/10.1016/j.toxrep.2014.11.018

de Oliveira Raphaelli, C., Pereira, E. dos S., Camargo, T. M., Ribeiro, J. A., Pereira, M. C., Vinholes, J., Dalmazo, G. O., Vizzotto, M., & Nora, L. (2021). Biological activity and chemical composition of fruits, seeds and leaves of guabirobeira (Campomanesia xanthocarpa O. Berg – Myrtaceae): A review. Food Bioscience, 40(July 2020). https://doi.org/10.1016/j.fbio.2021.100899

Do Amaral, M. D. P. H., Piresvieira, F., Leite, M. N., Do Amaral, L. H., Pinheiro, L. C., Fonseca, B. G., Pereira, M. C. S., & Varejão, E. V. (2009). Coumarin content of guaco syrup stored at different temperatures [Determinação do teor de cumarina no xarope de guaco armazenado em diferentes temperaturas]. Brazilian Journal of Pharmacognosy.19(2B), 607-611.

do Amarante, C. V. T., de Souza, A. G., Benincá, T. D. T., & Steffens, C. A. (2017). Phenolic content and antioxidant activity of fruit of Brazilian genotypes of feijoa. Pesquisa Agropecuaria Brasileira. 52, 1223-1230. https://doi.org/10.1590/S0100-204X2017001200011

Donado-Pestana, C. M., Belchior, T., Festuccia, W. T., & Genovese, M. I. (2015). Phenolic compounds from cambuci (Campomanesia phaea O. Berg) fruit attenuate glucose intolerance and adipose tissue inflammation induced by a high-fat, high-sucrose diet. Food Research International. 69, 170-178. https://doi.org/10.1016/j.foodres.2014.12.032

Ferreira, L. C., Grabe-Guimarães, A., De Paula, C. A., Michel, M. C. P., Guimarães, R. G., Rezende, S. A., De Souza Filho, J. D., & Saúde-Guimarães, D. A. (2013). Anti-inflammatory and antinociceptive activities of Campomanesia adamantium. Journal of Ethnopharmacology. 14 (1), 100-108. https://doi.org/10.1016/j.jep.2012.10.037

Figueirôa, E. D. O., Nascimento Da Silva, L. C., De Melo, C. M. L., Neves, J. K. D. A. L., Da Silva, N. H., Pereira, V. R. A., & Correia, M. T. D. S. (2013). Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from eugenia uniflora L. and eugenia malaccensis L.: Correlation with polyphenol and flavanoid content. The Scientific World Journal. 2013 (2013), 125027. https://doi.org/10.1155/2013/125027

Gobbo-Neto, L., & Lopes, N. P. (2007). Medicinal plants: Factors of influence on the content of secondary metabolites. Quimica Nova. 30, 374-381. https://doi.org/10.1590/S0100-40422007000200026

Hmoteh, J., Musthafa, K. S., & Voravuthikunchai, S. P. (2018). Effects of Rhodomyrtus tomentosa extract on virulence factors of Candida albicans and human neutrophil function. Archives of Oral Biology. 87, 35-42. https://doi.org/10.1016/j.archoralbio.2017.11.007

Klafke, J. Z., da Silva, M. A., Panigas, T. F., Belli, K. C., de Oliveira, M. F., Barichello, M. M., Rigo, F. K., Rossato, M. F., Soares dos Santos, A. R., Pizzolatti, M. G., Ferreira, J., & Viecili, P. R. N. (2010). Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients. Journal of Ethnopharmacology, 12 (2), 299–305. https://doi.org/10.1016/j.jep.2009.11.004

Levy, A. S., & Carley, S. K. (2012). Cytotoxic activity of hexane extracts of psidium guajava L (Myrtaceae) and cassia alata L (Caesalpineaceae) in kasumi-1 and OV2008 cancer cell lines. Tropical Journal of Pharmaceutical Research. 11(2), 201-207. https://doi.org/10.4314/tjpr.v11i2.5

Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

Malta, L. G., Tessaro, E. P., Eberlin, M., Pastore, G. M., & Liu, R. H. (2013). Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Research International. 53(1), 417-425. https://doi.org/10.1016/j.foodres.2013.04.024

Markman, B. E. O., Bacchi, E. M., & Kato, E. T. M. (2004). Antiulcerogenic effects of Campomanesia xanthocarpa. Journal of Ethnopharmacology, 94(1), 55–57. https://doi.org/10.1016/j.jep.2004.04.025

Michel, M. C. P., Guimarães, A. G., Paula, C. A., Rezende, S. A., Sobral, M. E. G., & Guimarães, D. A. S. (2013). Extracts from the leaves of Campomanesia velutina inhibits production of LPS/INF-γ induced inflammatory mediators in J774A.1 cells and exerts anti-inflammatory and antinociceptive effects in vivo. Brazilian Journal of Pharmacognosy, 23(6), 927–936. https://doi.org/10.1590/S0102-695X2013000600010

Müller, L., Fröhlich, K., & Böhm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry. 129(1), 139-148. https://doi.org/10.1016/j.foodchem.2011.04.045

Nanditha, B., & Prabhasankar, P. (2009). Antioxidants in bakery products: A review. 49(1), 1-27. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408390701764104

Neha, K., Haider, M. R., Pathak, A., & Yar, M. S. (2019). Medicinal prospects of antioxidants: A review. 178, 687-704. European Journal of Medicinal Chemistry, 178, 687–704. https://doi.org/10.1016/j.ejmech.2019.06.010

Neri-Numa, I. A., Carvalho-Silva, L. B., Morales, J. P., Malta, L. G., Muramoto, M. T., Ferreira, J. E. M., de Carvalho, J. E., Ruiz, A. L. T. G., Maróstica Junior, M. R., & Pastore, G. M. (2013). Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh - Myrtaceae) of the Brazilian Amazon Forest. Food Research International. 50(1), 70-76https://doi.org/10.1016/j.foodres.2012.09.032

Neri-Numa, I. A., Soriano Sancho, R. A., Pereira, A. P. A., & Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103(May 2017), 345–360. https://doi.org/10.1016/j.foodres.2017.10.053

Park, H. J., Yang, H. J., Kim, K. H., & Kim, S. H. (2015). Aqueous extract of Orostachys japonicus A. Berger exerts immunostimulatory activity in RAW 264.7 macrophages. Journal of Ethnopharmacology. 170,210-217. https://doi.org/10.1016/j.jep.2015.04.012

Pipe, R. K., Farley, S. R., & Coles, J. A. (1997). The separation and characterisation of haemocytes from the mussel Mytilus edulis. Cell and Tissue Research. 289(3), 537-545. https://doi.org/10.1007/s004410050899

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588–602. https://doi.org/10.1111/j.1365-2125.2012.04425.x

Rocha, W. S., Lopes, R. M., da Silva, D. B., Vieira, R. F., da Silva, J. P., & Agostini-Costa, T. da S. (2011). Total phenolics and condensed tannins in native fruits from Brazilian savanna. Revista Brasileira de Fruticultura. 33, 1215-1221. https://doi.org/10.1590/S0100-29452011000400021

Rosen, H., & Gordon, S. (1987). Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. Journal of Experimental Medicine. 166(6), 1685-1701. https://doi.org/10.1084/jem.166.6.1685

Salmazzo, G. R., Verdan, M. H., Silva, F., Cicarelli, R. M., Mota, J. da S., Salvador, M. J., de Carvalho, J. E., & Cardoso, C. A. L. (2019). Chemical composition and antiproliferative, antioxidant and trypanocidal activities of the fruits from Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae). Natural Product Research, 0(0), 1–5. https://doi.org/10.1080/14786419.2019.1607333

Santos, M. D. S., Lima, J. J. de, Petkowicz, C. L. D. O., & Cândido, L. M. B. (2013). Chemical characterization and evaluation of the antioxidant potential of gabiroba jam (Campomanesia xanthocarpa Berg). Acta Scientiarum. Agronomy. 35, 73-82. https://doi.org/10.4025/actasciagron.v35i1.14389

Santos, M. da S., Miguel, O. G., Petkowicz, C. L. O., & Cândido, L. M. B. (2012). Antioxidant and fatty acid profile of gabiroba seed (Campomanesisa Xanthocarpa Berg). Food Science and Technology. 32, 234-238. https://doi.org/10.1590/s0101-20612012005000045

Seigler, D. S., Seilheimer, S., Keesy, J., & Huang, H. F. (1986). Tannins from four commonAcacia species of Texas and Northeastern Mexico. Economic Botany. 40, 220-232. https://doi.org/10.1007/bf02859146

Skalicka-Woźniak, K., & Głowniak, K. (2012). Pressurized liquid extraction of coumarins from fruits of Heracleum leskowii with application of solvents with different polarity under increasing temperature. Molecules. 17 (4), 4133-41. https://doi.org/10.3390/molecules17044133

Souza, A., Fassina, A. C., & Saraiva, F. (2018). Compostos bioativos e atividade antioxidante em frutas nativas do Brasil. Agrotrópica (Itabuna). 30 (1), 73-78. https://doi.org/10.21757/0103-3816.2018v30n1p73-78.pdf

Stewart, P., Boonsiri, P., Puthong, S., & Rojpibulstit, P. (2013). Antioxidant activity and ultrastructural changes in gastric cancer cell lines induced by Northeastern Thai edible folk plant extracts. BMC Complementary and Alternative Medicine. 13(1), 1-11. https://doi.org/10.1186/1472-6882-13-60

Stockert, J. C., Horobin, R. W., Colombo, L. L., & Blázquez-Castro, A. (2018). Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica, 120(3), 159–167. https://doi.org/10.1016/j.acthis.2018.02.005

Teixeira, N., Melo, J. C. S., Batista, L. F., Paula-Souza, J., Fronza, P., & Brandão, M. G. L. (2019). Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Research International, 119(October 2018), 325–348. https://doi.org/10.1016/j.foodres.2019.01.058

Viecili, P. R. N., Borges, D. O., Kirsten, K., Malheiros, J., Viecili, E., Melo, R. D., Trevisan, G., da Silva, M. A., Bochi, G. V., Moresco, R. N., & Klafke, J. Z. (2014). Effects of Campomanesia xanthocarpa on inflammatory processes, oxidative stress, endothelial dysfunction and lipid biomarkers in hypercholesterolemic individuals. Atherosclerosis, 234(1), 85–92. https://doi.org/10.1016/j.atherosclerosis.2014.02.010

Vinagre, A. S., Rönnau, Â. D. S. R. O., Pereira, S. F., Da Silveira, L. U., Wiilland, E. D. F., & Suyenaga, E. S. (2010). Anti-diabetic effects of Campomanesia xanthocarpa (Berg) leaf decoction. Brazilian Journal of Pharmaceutical Sciences. 46, 169-177. https://doi.org/10.1590/S1984-82502010000200002

Wang, W. H., Tyan, Y. C., Chen, Z. S., Lin, C. G., Yang, M. H., Yuan, S. S., & Tsai, W. C. (2014). Evaluation of the antioxidant activity and antiproliferative effect of the jaboticaba (Myrciaria cauliflora) seed extracts in oral carcinoma cells. BioMed Research International. 2014 (2014), 185946. https://doi.org/10.1155/2014/185946

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Descargas

Publicado

20/07/2022

Cómo citar

DALASTRA, V. .; KAEL, C.; BONATTO, S. J. R. .; YAMAZAKI, R. K. Evaluación química y actividad biológica de compuestos bioactivos de Campomanesia xanthocarpa Berg. Research, Society and Development, [S. l.], v. 11, n. 9, p. e30011931561, 2022. DOI: 10.33448/rsd-v11i9.31561. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31561. Acesso em: 22 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas