Estudios recientes sobre compuestos de carbohidratos para la inhibición de la corrosión: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.32021

Palabras clave:

Revisión sistemática; Biopolímeros; Carbohidratos; Inhibición de la corrosión.

Resumen

Los biopolímeros de carbohidratos son una de las alternativas ecológicas a otros inhibidores de corrosión orgánicos con potencial tóxico. En la inhibición de la corrosión representan un conjunto de compuestos químicamente estables, biodegradables y amigables con el medio ambiente con fuerzas de inhibición confiables para proteger superficies metálicas, convirtiéndolos en recubrimientos efectivos para la protección de metales. Por lo tanto, este artículo presenta una revisión sistemática de los biopolímeros de carbohidratos utilizados como inhibidores de la corrosión desde 2018. La investigación siguió el protocolo PRISMA, que brinda un resumen meticuloso de toda la investigación primaria disponible en respuesta a una pregunta de investigación. Después de incluir/excluir los pasos, se incluyeron cuarenta y cinco estudios en la revisión. Los resultados se presentan enfocándose en los tipos de biopolímeros evaluados, como Chitosan, Dextrano, Celulosa y Goma Arábiga, además de los metales analizados, los medios utilizados para acelerar el proceso de corrosión, el tipo de inhibidor y la eficiencia alcanzada en cada uno. estudio. fueron presentados. En definitiva, esta metodología ayudó a identificar los principales vacíos de conocimiento en esta área.

Citas

An, Y., Jiang, G., Ren, Y., Zhang, L., Qi, Y., & Ge, Q. (2015). An environmental friendly and biodegradable shale inhibitor based on chitosan quaternary ammonium salt. Journal of Petroleum Science and Engineering, 135, 253–260. https://doi.org/10.1016/j.petrol.2015.09.005

Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Mazumder, M. A. J., & Singh, A. (2020). Chitosan Schiff base: an environmentally benign biological macromolecule as a new corrosion inhibitor for oil & gas industries. International Journal of Biological Macromolecules, 144, 305–315. https://doi.org/10.1016/j.ijbiomac.2019.12.106

Antony, R., Arun, T., & Manickam, S. T. D. (2019). A review on applications of chitosan-based Schiff bases. International Journal of Biological Macromolecules, 129, 615–633. https://doi.org/10.1016/j.ijbiomac.2019.02.047

Anush, S. M., Vishalakshi, B., Kalluraya, B., & Manju, N. (2018). Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules, 119, 446–452. https://doi.org/10.1016/j.ijbiomac.2018.07.129

Ashassi-Sorkhabi, H., & Kazempour, A. (2020). Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: A comprehensive review. Carbohydrate Polymers, 237(March), 116110. https://doi.org/10.1016/j.carbpol.2020.116110

Avérous, L., & Pollet, E. (2012). Environmental Silicate Nano-Biocomposites. Green Energy and Technology, 50. https://doi.org/10.1007/978-1-4471-4108-2

Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. Bin, & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. In International Journal of Biological Macromolecules (Vol. 185, pp. 832–848). https://doi.org/10.1016/j.ijbiomac.2021.07.023

Bahari, H. S., Ye, F., Carrillo, E. A. T., Leliopoulos, C., Savaloni, H., & Dutta, J. (2020). Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper. International Journal of Biological Macromolecules, 162, 1566–1577. https://doi.org/10.1016/j.ijbiomac.2020.08.035

Baran, T., & Menteş, A. (2015). Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization. International Journal of Biological Macromolecules, 79, 542–554. https://doi.org/10.1016/j.ijbiomac.2015.05.021

Biswas, A., Das, D., Lgaz, H., Pal, S., & Nair, U. G. (2019). Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies. Journal of Molecular Liquids, 275, 867–878. https://doi.org/10.1016/j.molliq.2018.11.095

Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2011). Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes. Revista Eletrônica de Materiais e Processos, 6(2), 127–139. http://www.ncbi.nlm.nih.gov/pubmed/19998664

Carneiro, J., Tedim, J., Fernandes, S. C. M., Freire, C. S. R., Gandini, A., Ferreira, M. G. S., & Zheludkevich, M. L. (2013). Functionalized chitosan-based coatings for active corrosion protection. Surface and Coatings Technology, 226, 51–59. https://doi.org/10.1016/j.surfcoat.2013.03.035

Carneiro, J., Tedim, J., & Ferreira, M. G. S. (2015). Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: A review. Progress in Organic Coatings, 89, 348–356. https://doi.org/10.1016/j.porgcoat.2015.03.008

Chai, C., Xu, Y., Shi, S., Zhao, X., Wu, Y., Xu, Y., & Zhang, L. (2018). Functional polyaspartic acid derivatives as eco-friendly corrosion inhibitors for mild steel in 0.5 M H2SO4 solution. RSC Advances, 8(44), 24970–24981. https://doi.org/10.1039/c8ra03534b

Chang, K. L. B., Tai, M. C., & Cheng, F. H. (2001). Kinetics and products of the degradation of chitosan by hydrogen peroxide. In Journal of Agricultural and Food Chemistry (Vol. 49, Issue 10, pp. 4845–4851). https://doi.org/10.1021/jf001469g

Charitha, B. P., Chenan, A., & Rao, P. (2017). Enhancement of Surface Coating Characteristics of Epoxy Resin by Dextran: An Electrochemical Approach. In Industrial and Engineering Chemistry Research (Vol. 56, Issue 5, pp. 1137–1147). https://doi.org/10.1021/acs.iecr.6b03274

Charitha, B. P., & Rao, P. (2018). Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies. International Journal of Biological Macromolecules, 112, 461–472. https://doi.org/10.1016/j.ijbiomac.2018.01.218

Chauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H., & Salghi, R. (2018). Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. International Journal of Biological Macromolecules, 107, 1747–1757. https://doi.org/10.1016/j.ijbiomac.2017.10.050

Chauhan, D. S., Mouaden, K. EL, Quraishi, M. A., & Bazzi, L. (2020). Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl. International Journal of Biological Macromolecules, 152, 234–241. https://doi.org/10.1016/j.ijbiomac.2020.02.283

Chauhan, D. S., Quraishi, M. A., & Qurashi, A. (2021). Recent trends in environmentally sustainable Sweet corrosion inhibitors. Journal of Molecular Liquids, 326, 115117. https://doi.org/10.1016/j.molliq.2020.115117

Chauhan, D. S., Quraishi, M. A., Sorour, A. A., Saha, S. K., & Banerjee, P. (2019). Triazole-modified chitosan: A biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Advances, 9(26), 14990–15003. https://doi.org/10.1039/c9ra00986h

Cheng, S., Chen, S., Liu, T., Chang, X., & Yin, Y. (2007). Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1 M HCl. Materials Letters, 61(14–15), 3276–3280. https://doi.org/10.1016/j.matlet.2006.11.102

Chugh, B., Singh, A. K., Chaouiki, A., Salghi, R., Thakur, S., & Pani, B. (2020). A comprehensive study about anti-corrosion behaviour of pyrazine carbohydrazide: Gravimetric, electrochemical, surface and theoretical study. Journal of Molecular Liquids, 299, 112160. https://doi.org/10.1016/j.molliq.2019.112160

Chugh, B., Singh, A. K., Poddar, D., Thakur, S., Pani, B., & Jain, P. (2020). Relation of degree of substitution and metal protecting ability of cinnamaldehyde modified chitosan. Carbohydrate Polymers, 234, 115945. https://doi.org/10.1016/j.carbpol.2020.115945

Clavijo, S., Membrives, F., Quiroga, G., Boccaccini, A. R., & Santillán, M. J. (2016). Electrophoretic deposition of chitosan/Bioglass® and chitosan/Bioglass®/TiO2 composite coatings for bioimplants. Ceramics International, 42(12), 14206–14213. https://doi.org/10.1016/j.ceramint.2016.05.178

Clifford, A., Pang, X., & Zhitomirsky, I. (2018). Biomimetically modified chitosan for electrophoretic deposition of composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544(December 2017), 28–34. https://doi.org/10.1016/j.colsurfa.2018.02.028

Cui, G., Guo, J., Zhang, Y., Zhao, Q., Fu, S., Han, T., Zhang, S., & Wu, Y. (2019). Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution. Carbohydrate Polymers, 203, 386–395. https://doi.org/10.1016/j.carbpol.2018.09.038

Darmokoesoemo, H., Suyanto, S., Anggara, L. S., Amenaghawon, A. N., & Kusuma, H. S. (2018). Application of carboxymethyl chitosan-benzaldehyde as anticorrosion agent on steel. International Journal of Chemical Engineering, 2018. https://doi.org/10.1155/2018/4397867

Eduok, U., Ohaeri, E., & Szpunar, J. (2018). Electrochemical and surface analyses of X70 steel corrosion in simulated acid pickling medium: Effect of poly (N-vinyl imidazole) grafted carboxymethyl chitosan additive. Electrochimica Acta, 278, 302–312. https://doi.org/10.1016/j.electacta.2018.05.060

El-Sherbiny, I. M., Lins, R. J., Abdel-Bary, E. M., & Harding, D. R. K. (2005). Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. European Polymer Journal, 41(11), 2584–2591. https://doi.org/10.1016/j.eurpolymj.2005.05.035

EL. Mouaden, K., Chauhan, D. S., Quraishi, M. A., Bazzi, L., & Hilali, M. (2020). Cinnamaldehyde-modified chitosan as a bio-derived corrosion inhibitor for acid pickling of copper: Microwave synthesis, experimental and computational study. International Journal of Biological Macromolecules, 164, 3709–3717. https://doi.org/10.1016/j.ijbiomac.2020.08.137

El Mouaden, K., El Ibrahimi, B., Oukhrib, R., Bazzi, L., Hammouti, B., Jbara, O., Tara, A., Chauhan, D. S., & Quraishi, M. A. (2018). Chitosan polymer as a green corrosion inhibitor for copper in sulfide-containing synthetic seawater. International Journal of Biological Macromolecules, 119, 1311–1323. https://doi.org/10.1016/j.ijbiomac.2018.07.182

Fardioui, M., Rbaa, M., Benhiba, F., Galai, M., Guedira, T., Lakhrissi, B., Warad, I., & Zarrouk, A. (2021). Bio-active corrosion inhibitor based on 8-hydroxyquinoline-grafted-Alginate: Experimental and computational approaches. Journal of Molecular Liquids, 323, 114615. https://doi.org/10.1016/j.molliq.2020.114615

Farhadian, A., Assar Kashani, S., Rahimi, A., Oguzie, E. E., Javidparvar, A. A., Nwanonenyi, S. C., Yousefzadeh, S., & Nabid, M. R. (2021). Modified hydroxyethyl cellulose as a highly efficient eco-friendly inhibitor for suppression of mild steel corrosion in a 15% HCl solution at elevated temperatures. Journal of Molecular Liquids, 338, 116607. https://doi.org/10.1016/j.molliq.2021.116607

Farhadian, A., Varfolomeev, M. A., Shaabani, A., Nasiri, S., Vakhitov, I., Zaripova, Y. F., Yarkovoi, V. V., & Sukhov, A. V. (2020). Sulfonated chitosan as green and high cloud point kinetic methane hydrate and corrosion inhibitor: Experimental and theoretical studies. Carbohydrate Polymers, 236, 116035. https://doi.org/10.1016/j.carbpol.2020.116035

Figueiredo, E. P., & Meira, G. (2013). Corrosión de armadura de estructuras de hormigón. ALCONPAT Internacional - Associación Latinoamericana de Control de Calidad, Patología y Recuperación de La Construcción, 30.

Franchetti, S. M. M., & Marconato, J. C. (2006). Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos. Química Nova, 29(4), 811–816. https://doi.org/10.1590/s0100-40422006000400031

Gebhardt, F., Seuss, S., Turhan, M. C., Hornberger, H., Virtanen, S., & Boccaccini, A. R. (2012). Characterization of electrophoretic chitosan coatings on stainless steel. Materials Letters, 66(1), 302–304. https://doi.org/10.1016/j.matlet.2011.08.088

Giuliani, C., Pascucci, M., Riccucci, C., Messina, E., Salzano de Luna, M., Lavorgna, M., Ingo, G. M., & Di Carlo, G. (2018). Chitosan-based coatings for corrosion protection of copper-based alloys: A promising more sustainable approach for cultural heritage applications. Progress in Organic Coatings, 122(April), 138–146. https://doi.org/10.1016/j.porgcoat.2018.05.002

Gupta, N. K., Joshi, P. G., Srivastava, V., & Quraishi, M. A. (2018). Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. International Journal of Biological Macromolecules, 106, 704–711. https://doi.org/10.1016/j.ijbiomac.2017.08.064

Hasanin, M. S., & Al Kiey, S. A. (2020). Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. International Journal of Biological Macromolecules, 161, 345–354. https://doi.org/10.1016/j.ijbiomac.2020.06.040

Hassan, R. M., Ibrahim, S. M., Takagi, H. D., & Sayed, S. A. (2018). Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor. Carbohydrate Polymers, 192, 356–363. https://doi.org/10.1016/j.carbpol.2018.03.066

Heise, S., Höhlinger, M., Hernández, Y. T., Palacio, J. J. P., Rodriquez Ortiz, J. A., Wagener, V., Virtanen, S., & Boccaccini, A. R. (2017). Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochimica Acta, 232, 456–464. https://doi.org/10.1016/j.electacta.2017.02.081

Hernández-Padrón, G., Rojas, F., & Castaño, V. (2006). Development and testing of anticorrosive SiO2/phenolic-formaldehydic resin coatings. Surface and Coatings Technology, 201(3–4), 1207–1214. https://doi.org/10.1016/j.surfcoat.2006.01.070

Izadi, M., Shahrabi, T., & Ramezanzadeh, B. (2018). Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers.pdf. Applied Surface Science, 491–505. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.01.185

Jena, G., Anandkumar, B., Vanithakumari, S. C., George, R. P., Philip, J., & Amarendra, G. (2020). Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Progress in Organic Coatings, 139, 105444. https://doi.org/10.1016/j.porgcoat.2019.105444

Joshi, J. M., & Sinha, V. K. (2007). Ceric ammonium nitrate induced grafting of polyacrylamide onto carboxymethyl chitosan. In Carbohydrate Polymers (Vol. 67, Issue 3, pp. 427–435). https://doi.org/10.1016/j.carbpol.2006.06.021

Koch, G. (2017). Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101105-8.00001-2

Kokalj, A., Behzadi, H., & Farahati, R. (2020). DFT study of aqueous-phase adsorption of cysteine and penicillamine on Fe(110): Role of bond-breaking upon adsorption. Applied Surface Science, 514(February), 145896. https://doi.org/10.1016/j.apsusc.2020.145896

Lai, X., Hu, J., Ruan, T., Zhou, J., & Qu, J. (2021). Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid. Carbohydrate Polymers, 265, 118074. https://doi.org/10.1016/j.carbpol.2021.118074

Liu, J., Yu, Q., Yu, M., Li, S., Zhao, K., Xue, B., & Zu, H. (2018). Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024. Journal of Alloys and Compounds, 744, 728–739. https://doi.org/10.1016/j.jallcom.2018.01.267

Luo, X., Ci, C., Li, J., Lin, K., Du, S., Zhang, H., Li, X., Cheng, Y. F., Zang, J., & Liu, Y. (2019). 4-aminoazobenzene modified natural glucomannan as a green eco-friendly inhibitor for the mild steel in 0.5 M HCl solution. Corrosion Science, 151(November 2017), 132–142. https://doi.org/10.1016/j.corsci.2019.02.027

Ma, Z., Wang, W., Wu, Y., He, Y., & Wu, T. (2014). Oxidative degradation of chitosan to the low molecular water-soluble chitosan over peroxotungstate as chemical scissors. In PLoS ONE (Vol. 9, Issue 6). https://doi.org/10.1371/journal.pone.0100743

Macedo, R. G. M. de A., Marques, N. do N., Tonholo, J., & Balaban, R. de C. (2019). Water-soluble carboxymethylchitosan used as corrosion inhibitor for carbon steel in saline medium. Carbohydrate Polymers, 205, 371–376. https://doi.org/10.1016/j.carbpol.2018.10.081

Manawi, Y., Kochkodan, V., Mohammad, A. W., & Ali Atieh, M. (2017). Arabic gum as a novel pore-forming and hydrophilic agent in polysulfone membranes. In Journal of Membrane Science (Vol. 529, pp. 95–104). https://doi.org/10.1016/j.memsci.2017.02.002

Marzorati, S., Verotta, L., & Trasatti, S. P. (2019). Green corrosion inhibitors from natural sources and biomass wastes. Molecules, 24(1). https://doi.org/10.3390/molecules24010048

Mobin, M., Basik, M., & Aslam, J. (2018). Boswellia serrata gum as highly efficient and sustainable corrosion inhibitor for low carbon steel in 1 M HCl solution: Experimental and DFT studies. Journal of Molecular Liquids, 263, 174–186. https://doi.org/10.1016/j.molliq.2018.04.150

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & Group, P. (2015). Preferred reporting items for systematic review and meta-analysis protocols ( PRISMA-P ) 2015 statement. 4(1), 1–9. https://doi.org/10.1186/2046-4053-4-1

Nadi, I., Belattmania, Z., Sabour, B., Reani, A., Sahibed-dine, A., Jama, C., & Bentiss, F. (2019). Sargassum muticum extract based on alginate biopolymer as a new efficient biological corrosion inhibitor for carbon steel in hydrochloric acid pickling environment: Gravimetric, electrochemical and surface studies. International Journal of Biological Macromolecules, 141, 137–149. https://doi.org/10.1016/j.ijbiomac.2019.08.253

Negi, H., Verma, P., & Singh, R. K. (2021). A comprehensive review on the applications of functionalized chitosan in petroleum industry. Carbohydrate Polymers, 266. https://doi.org/10.1016/j.carbpol.2021.118125

Neves, R. M., Jr, H. L. O., Zattera, A. J., & Amico, S. C. (2021). Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers, 255, 1–17.

Nikpour, S., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B., & Mahdavian, M. (2019). Eriobotrya japonica Lindl leaves extract application for effective corrosion mitigation of mild steel in HCl solution: Experimental and computational studies. Construction and Building Materials, 220, 161–176. https://doi.org/10.1016/j.conbuildmat.2019.06.005

Nwanonenyi, S., Ogbobe, O., Madufor, I., & Oguzie, E. (2016). Inhibitive Performance of Hydroxypropyl Cellulose and Potassium Iodide on the Corrosion of Mild Steel in Sulphuric Acid Environment. American Chemical Science Journal, 16(2), 1–12. https://doi.org/10.9734/acsj/2016/28250

O’Connor, A., Sargeant, J., & Wood, H. (2017). Systematic reviews. Veterinary Epidemiology: Fourth Edition, 397–420. https://doi.org/10.1002/9781118280249.ch19

Olivares, O., Likhanova, N. V., Gómez, B., Navarrete, J., Llanos-Serrano, M. E., Arce, E., & Hallen, J. M. (2006). Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. In Applied Surface Science (Vol. 252, Issue 8, pp. 2894–2909). https://doi.org/10.1016/j.apsusc.2005.04.040

Oliveira, J. A. M., de Santana, R. A. C., & Wanderley Neto, A. de O. (2020). Characterization of the chitosan-tungsten composite coating obtained by electrophoretic deposition. Progress in Organic Coatings, 143, 105631. https://doi.org/10.1016/j.porgcoat.2020.105631

Pais, M., George, S. D., & Rao, P. (2021). Glycogen nanoparticles as a potential corrosion inhibitor. International Journal of Biological Macromolecules, 182, 2117–2129. https://doi.org/10.1016/j.ijbiomac.2021.05.185

Pais, M., & Rao, P. (2020). Maltodextrin for corrosion mitigation of zinc in sulfamic acid: Electrochemical, surface and spectroscopic studies. International Journal of Biological Macromolecules, 145, 575–585. https://doi.org/10.1016/j.ijbiomac.2019.12.197

Pakseresht, A., Alizadeh, H., Hanaei, A., Heidarshenas, B., Shahbazkhan, A., & Ahmadi, N. P. (2018). The Effect of accelerator types on the phosphate Zn-%12Ni electrodeposite coating. Material Science & Engineering International Journal, 2(6). https://doi.org/10.15406/mseij.2018.02.00062

Pourhashem, S., Vaezi, M. R., Rashidi, A., & Bagherzadeh, M. R. (2017). Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science, 115, 78–92. https://doi.org/10.1016/j.corsci.2016.11.008

Pozzo, L. de Y., Conceição, T. F. da, Spinelli, A., Scharnagl, N., & Nunes Pires, A. T. (2019). The influence of the crosslinking degree on the corrosion protection properties of chitosan coatings in simulated body fluid. Progress in Organic Coatings, 137, 105328. https://doi.org/10.1016/j.porgcoat.2019.105328

Raja, P. B., & Sethuraman, M. G. (2008). Natural products as corrosion inhibitor for metals in corrosive media - A review. Materials Letters, 62(1), 113–116. https://doi.org/10.1016/j.matlet.2007.04.079

Ramezanzadeh, B., Ghasemi, E., Mahdavian, M., Changizi, E., & Mohamadzadeh Moghadam, M. H. (2015). Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon, 93, 555–573. https://doi.org/10.1016/j.carbon.2015.05.094

Rani, B. E. A., & Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion, 2012(6), 16–25. https://doi.org/10.1155/2012/380217

Rbaa, M., Benhiba, F., Hssisou, R., Lakhrissi, Y., Lakhrissi, B., Touhami, M. E., Warad, I., & Zarrouk, A. (2021). Green synthesis of novel carbohydrate polymer chitosan oligosaccharide grafted on D-glucose derivative as bio-based corrosion inhibitor. Journal of Molecular Liquids, 322, 114549. https://doi.org/10.1016/j.molliq.2020.114549

Rbaa, M., Fardioui, M., Verma, C., Abousalem, A. S., Galai, M., Ebenso, E. E., Guedira, T., Lakhrissi, B., Warad, I., & Zarrouk, A. (2020). 8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: Experimental and computational analyses. International Journal of Biological Macromolecules, 155, 645–655. https://doi.org/10.1016/j.ijbiomac.2020.03.200

Ribeiro, D. V., & Helene, P. (2013). Corrosão em Estruturas de Concreto: Teoria, Controle e Métodos de Análise. Elsevier, 1, 240 p. https://barnard.edu/sites/default/files/inline/student_user_guide_for_spss.pdf%0Ahttp://www.ibm.com/support%0Ahttp://www.spss.com/sites/dm-book/legacy/ProgDataMgmt_SPSS17.pdf%0Ahttps://www.neps-data.de/Portals/0/Working Papers/WP_XLV.pdf%0Ahttp://www2.psy

Sambyal, P., Ruhi, G., Dhawan, S. K., Bisht, B. M. S., & Gairola, S. P. (2018). Enhanced anticorrosive properties of tailored poly(aniline-anisidine)/chitosan/SiO2 composite for protection of mild steel in aggressive marine conditions. Progress in Organic Coatings, 119, 203–213. https://doi.org/10.1016/j.porgcoat.2018.02.014

Sangeetha, Y., Meenakshi, S., & SairamSundaram, C. (2015). Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel. International Journal of Biological Macromolecules, 72, 1244–1249. https://doi.org/10.1016/j.ijbiomac.2014.10.044

Sharma, S. K., Peter, A., & Obot, I. B. (2015). Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review. Journal of Analytical Science and Technology, 6(1). https://doi.org/10.1186/s40543-015-0067-0

Shen, C., Alvarez, V., Koenig, J. D. B., & Luo, J. L. (2019). Gum Arabic as corrosion inhibitor in the oil industry: experimental and theoretical studies. Corrosion Engineering Science and Technology, 54(5), 444–454. https://doi.org/10.1080/1478422X.2019.1613780

Singh, P., Chauhan, D. S., Chauhan, S. S., Singh, G., & Quraishi, M. A. (2019). Chemically modified expired Dapsone drug as environmentally benign corrosion inhibitor for mild steel in sulphuric acid useful for industrial pickling process. Journal of Molecular Liquids, 286, 110903. https://doi.org/10.1016/j.molliq.2019.110903

Skale, S., Doleček, V., & Slemnik, M. (2007). Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Science, 49(3), 1045–1055. https://doi.org/10.1016/j.corsci.2006.06.027

Solomon, M. M., Gerengi, H., Umoren, S. A., Essien, N. B., Essien, U. B., & Kaya, E. (2018). Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media. Carbohydrate Polymers, 181, 43–55. https://doi.org/10.1016/j.carbpol.2017.10.051

Solomon, M. M., Umoren, S. A., Obot, I. B., Sorour, A. A., & Gerengi, H. (2018). Exploration of Dextran for Application as Corrosion Inhibitor for Steel in Strong Acid Environment: Effect of Molecular Weight, Modification, and Temperature on Efficiency. ACS Applied Materials and Interfaces, 10(33), 28112–28129. https://doi.org/10.1021/acsami.8b09487

Solomon, M. M., Umoren, S. A., Udosoro, I. I., & Udoh, A. P. (2010). Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corrosion Science, 52(4), 1317–1325. https://doi.org/10.1016/j.corsci.2009.11.041

Sørbotten, A., Horn, S. J., Eijsink, V. G. H., & Vårum, K. M. (2005). Degradation of chitosans with chitinase B from Serratia marcescens. In FEBS Journal (Vol. 272, Issue 2, pp. 538–549). https://doi.org/10.1111/j.1742-4658.2004.04495.x

Srivastava, M., Srivastava, S. K., Nikhil, Ji, G., & Prakash, R. (2019). Chitosan based new nanocomposites for corrosion protection of mild steel in aggressive chloride media. International Journal of Biological Macromolecules, 140, 177–187. https://doi.org/10.1016/j.ijbiomac.2019.08.073

Tang, G., Ren, T., Yan, Z., Ma, L., Hou, X., & Huang, X. (2020). Preparation and anticorrosion resistance of a self-curing epoxy nanocomposite coating based on mesoporous silica nanoparticles loaded with perfluorooctyl triethoxysilane. Journal of Applied Polymer Science, 137(36), 1–11. https://doi.org/10.1002/app.49072

Tran, V. T., Lee, D. K., Kim, J., Jeong, K. J., Kim, C. S., & Lee, J. (2020). Magnetic Layer-by-Layer Assembly: From Linear Plasmonic Polymers to Oligomers. ACS Applied Materials and Interfaces, 12(14), 16584–16591. https://doi.org/10.1021/acsami.9b22684

Umoren, S. A., AlAhmary, A. A., Gasem, Z. M., & Solomon, M. M. (2018a). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117, 1017–1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014

Umoren, S. A., AlAhmary, A. A., Gasem, Z. M., & Solomon, M. M. (2018b). Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. International Journal of Biological Macromolecules, 117, 1017–1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014

Umoren, S. A., & Eduok, U. M. (2016). Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydrate Polymers, 140, 314–341. https://doi.org/10.1016/j.carbpol.2015.12.038

Umoren, S. A., Solomon, M. M., Madhankumar, A., & Obot, I. B. (2020). Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment. Carbohydrate Polymers, 230, 115466. https://doi.org/10.1016/j.carbpol.2019.115466

Urra Medina, E., & Barría Pailaquilén, R. M. (2010). Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare. Revista Latino-Americana de Enfermagem, 18(4), 824–831. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-11692010000400023&lng=en&nrm=iso&tlng=en%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/20922332

Verma, C., & Quraishi, M. A. (2021). Gum Arabic as an environmentally sustainable polymeric anticorrosive material: Recent progresses and future opportunities. International Journal of Biological Macromolecules, 184(April), 118–134. https://doi.org/10.1016/j.ijbiomac.2021.06.050

Vitório, J. A. P. (2003). Fundamentos da patologia das estruturas nas perícias de engenharia. Instituto Pernambucano de Avaliações e Perícias de Engenharia, 58. http://www.vitorioemelo.com.br/publicacoes/Fundamentos_Patologia_Estruturas_Pericias_Engenharia.pdf

Wei, H., Heidarshenas, B., Zhou, L., Hussain, G., Li, Q., & Ostrikov, K. (Ken). (2020). Green inhibitors for steel corrosion in acidic environment: state of art. Materials Today Sustainability, 10, 100044. https://doi.org/10.1016/j.mtsust.2020.100044

Wolynec, S. (2003). Técnicas Eletroquimicas de corrosão (EdUSP (ed.); 1a).

Yang, F., Liu, Y., Liu, T., Liu, S., & Zhao, H. (2019). Aniline trimer-including carboxymethylated β-cyclodextrin as an efficient corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. RSC Advances, 9(52), 30249–30258. https://doi.org/10.1039/c9ra04047a

Zhang, K., Yang, W., Xu, B., Chen, Y., Yin, X., Liu, Y., & Zuo, H. (2018). Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution. Journal of Colloid and Interface Science, 517, 52–60. https://doi.org/10.1016/j.jcis.2018.01.092

Zhang, K., Yang, W., Yin, X., Chen, Y., Liu, Y., Le, J., & Xu, B. (2018). Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution. Carbohydrate Polymers, 181, 191–199. https://doi.org/10.1016/j.carbpol.2017.10.069

Zhang, Q. H., Hou, B. S., Li, Y. Y., Zhu, G. Y., Lei, Y., Wang, X., Liu, H. F., & Zhang, G. A. (2021). Dextran derivatives as highly efficient green corrosion inhibitors for carbon steel in CO2-saturated oilfield produced water: Experimental and theoretical approaches. Chemical Engineering Journal, 424, 130519. https://doi.org/10.1016/j.cej.2021.130519

Zhang, W., Li, H. J., Chen, L., Zhang, S., Ma, Y., Ye, C., Zhou, Y., Pang, B., & Wu, Y. C. (2020). Fructan from Polygonatum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media. Carbohydrate Polymers, 238, 116216. https://doi.org/10.1016/j.carbpol.2020.116216

Zhang, W., Nie, B., Li, H. J., Li, Q., Li, C., & Wu, Y. C. (2021). Inhibition of mild steel corrosion in 1 M HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydrate Polymers, 260, 117842. https://doi.org/10.1016/j.carbpol.2021.117842

Zhang, W., Wu, Y. C., & Li, H. J. (2021). Apostichopus japonicus polysaccharide as efficient sustainable inhibitor for mild steel against hydrochloric acid corrosion. Journal of Molecular Liquids, 321, 114923. https://doi.org/10.1016/j.molliq.2020.114923

Zhao, Q., Guo, J., Cui, G., Han, T., & Wu, Y. (2020). Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids and Surfaces B: Biointerfaces, 194, 111150. https://doi.org/10.1016/j.colsurfb.2020.111150

Publicado

14/07/2022

Cómo citar

D’OLIVEIRA, M. C. de P. E. .; GUARDA, E. A.; GUARDA, P. M. .; SIDEL, S. M. . Estudios recientes sobre compuestos de carbohidratos para la inhibición de la corrosión: una revisión sistemática. Research, Society and Development, [S. l.], v. 11, n. 9, p. e41811932021, 2022. DOI: 10.33448/rsd-v11i9.32021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32021. Acesso em: 29 nov. 2024.

Número

Sección

Revisiones