Compuestos bioactivos presentes en el aceite de oliva y sus derivados: revisión de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32580

Palabras clave:

Aceite de oliva; Bioactivo; Fenólicos.

Resumen

El objetivo del estudio fue indagar en lo que se cuestionan investigadores de renombre de todo el mundo, es decir, especular sobre los países que más publican en lo que se refiere al aceite de oliva y sus derivados, cuáles son los mayores productores, qué es la calidad de estos productos ofrecidos al mercado, que son las mejores técnicas para preservar los compuestos beneficiosos para la salud, además de lagunas que pueden suscitar nuevas investigaciones esclarecedoras. Se llevó a cabo a través de una revisión bibliográfica, utilizando los descriptores ¨Aceite de Oliva¨ y ¨Bioactivos¨. La búsqueda fue refinada apuntando solo a artículos como la forma del documento, con publicación en los años 2021 y 2022. Posteriormente, los artículos seleccionados fueron encaminados al análisis bibliométrico. Con los 109 artículos preseleccionados en mano, se realizó un nuevo refinamiento, analizando 78 artículos, los cuales fueron categorizados en cinco temas de mayor importancia: Residuos de la producción de aceite de oliva, proceso tecnológico de análisis del aceite de oliva, parámetros químicos de diferentes cultivares, compuestos bioactivos, el proceso de determinación de compuestos bioactivos. Después de un análisis exhaustivo de todos los artículos seleccionados, inicialmente referidos a compuestos bioactivos y aceite de oliva, y durante la adición de subproductos de la producción de aceite de oliva, se pueden probar los beneficios de los compuestos bioactivos, formas de conservarlos mejor, sumándose a algunas tendencias. de sostenibilidad y preservación del medio ambiente y, por último, identificación de métodos que pueden resultar prometedores: bioinformática para predecir propiedades medicinales y análisis sensorial corroborando con técnicas analíticas y químicas.

Citas

Alemán-Jiménez, C., Domínguez-Perles, R., Fanti, F., Gallego-Gómez, J. I., Simonelli-Muñoz, A., Moine, E., Durand, T., Crauste, C., Gil-Izquierdo, A., & Medina, S. (2021). Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchemical Journal, 170.

Alongi, M., Lucci, P., Clodoveo, M. L., Schena, F. P., & Calligaris, S. (2022). Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds. Food Chemistry, 368.

Andreou, V., Chanioti, S., Stergiou, P., & Katsaros, G., (2021). Valorization of the Olive Oil Production Residue: Healthy Ingredient for Developing High Value-Added Spread. Sustainability, 13(24), 1-18.

Balli, D., Cecchi, L., Innocenti, M., Bellumori, M., & Mulinacci, N. (2021). Food by-products valorisation: Grape pomace and olive pomace as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chemistry, 355.

Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., & Stefani, M. (2021). Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants, 10(7).

Cádiz-Gurrea, M. D. L., Pinto, D., Delerue-Matos, C., & Rodrigues, F. (2021). Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics - A Preliminary Study. Antioxidants, 10(2), 1-18.

Cairone, F., Petralito, S., Scipione, L., & Cesa, S. (2021). Study on Extra Virgin Olive Oil: Quality Evaluation by Anti-Radical Activity, Color Analysis, and Polyphenolic HPLC-DAD Analysis. Foods, 10(8).

Cappelli, K., Ferlisi, F., Mecocci, S., Maranesi, M., Trabalza-Marinucci, M., Zerani, M., Dal Bosco, A., & Acuti, G. (2021). Dietary Supplementation of Olive Mill Waste Water Polyphenols in Rabbits: Evaluation of the Potential Effects on Hepatic Apoptosis, Inflammation and Metabolism through RT-qPCR Approach. Animals, 11(10), 1-12.

Capriotti, A. L., Cerrato, A., Aita, S. E., Montone, C. M., Piovesana, S., Laganà, A., & Cavaliere, C. (2021). Degradation of the polar lipid and fatty acid molecular species in extra virgin olive oil during storage based on shotgun lipidomics. Journal of Chromatography A, 1639, 1-9.

Chanioti, S., Katsouli, M., & Tzia, C. (2021). Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules, 26(6), 1-18.

Cherif, M., Rodrigues, N., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2021). Kinetic study of the microwave-induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil. Journal of the American Oil Chemists´ Society, 1-12.

Del Coco, L., Girelli, C. R., Angil`e, F., Mascio, I., Montemurro, C., Distaso, E., Tamburrano, P., Chiurlia, S., Clodoveo, M. L., Corbo, F., Amirante, R., Schena, F. P., & Fanizzi, F. P. (2021). NMR-based metabolomic study of Apulian Coratina extra virgin olive oil extracted with a combined ultrasound and thermal conditioning process in an industrial setting. Food Chemistry, 345.

Djemaa Landri, K., Hamri Zeghichi, S., Belkhiri Beder,W., Krisa, S., Cluzet, S., Richard, T.,Valls, J., Kadri, N., & Madani, K. (2021). Phenolic content, antioxidant and anti infammatory activities of some Algerian olive stone extracts obtained by conventional solvent and microwave assisted extractions under optimized conditions. Journal of Food Measurement and Characterization.

El-Baz, H. A., Elazzazy, A. M., Saleh, T. S., Dritsas, P., Mahyoub, J. A., Baeshen, M. N., Madian, H. R., Alkhaled, M., & Aggelis, G. (2020). Single Cell Oil (SCO)–Based Bioactive Compounds: I—Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities. Applied Biochemistry and Biotechnology 193, 822–845.

Fabiani, R., Vella, N., & Rosignoli, P. (2021). Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review. Molecules, 26(2), 1-17.

Fatoki, T. H., Akintayo, C. O., & Ibraheem, O. (2021). Exploration bio-informatique de l'huile d'olive : cibles molecularires et proprietés des principaux constituants bioactifs. OCL - Oleaginosas e gorduras, Culturas e Lipídios, 28(36), 1-8.

Federica, F., Elettra, M., Lilia, N., Luciano, P., Angelo, C., & Daniela, D. M. C. (2021). The effect of harvesting time on olive fruits and oils quality parameters of Tortiglione and Dritta olive cultivars. European Journal of Lipid Science and Technology.

Hannachi, H., & Elfalleh, W., (2020). Enrichment of Olive Oil with Polyphenols from Oleaster Leaves Using Central Composite Design for the Experimental Measurements. Analytical Letters, 54(4), 590-607.

Hernáez, Á., Jaramillo, S., García-Borrego, A., Espejo-Calvo, J.A., Covas, M.-I., Blanchart, G., de la Torre, R., Carrasco-Pancorbo, A., Mesa, M. D., Fernández-Prior, M. Á., Castañer, O., Fitó, M. (2021). From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants, 10(2), 1-14.

Karakoç, M. D., & Sekkin, S. (2021). Effects of Oleuropein on Epirubicin and Cyclophosphamide Combination Treatment in Rats. Turkish Journal of Pharmaceutical Sciences, 18(4), 420-429.

Karampetsou, K., Koutsoni, O. S, Gogou, G., Angelis, A., Skaltsounis, L. A, & Dotsika, E. (2021). Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. Plos Neglected Tropical Diseases, 15(1), 1-30.

Katsinas, N., Silva, A. B. D., Enríquez-de-Salamanca, A., Fernández, N., Bronze, M. R., & Rodríguez-Rojo, S. (2021). Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustainable Chemistry & Engineering, 9, 5590-5602.

Kritikou, E., Kalogiouri, N. P., Kostakis, M., Kanakis, D. C., Martakos, I., Lazarou, C., Pentogennis, M., & Thomaidis, N. S. (2021). Geographical Characterization of Olive Oils from the North Aegean Region Based on the Analysis of Biophenols with UHPLC-QTOF-MS. Foods, 10(9), 1-22.

Loizzo, M. R., Bonesi, M., Falco, T., Leporini, M., Pagliuso, M., Sicari, V., & Tundis, R. (2021). Journal of Food Processing and Preservation, 1-11.

López-Salas, L., Cea, I., Borrás-Linares, I., Emanuelli, T., Robert, P., Segura-Carretero, A., & Lozano-Sánchez, J. (2021). Preliminary Investigation of Different Drying Systems to Preserve Hydroxytyrosol and Its Derivatives in Olive Oil Filter Cake Pressurized Liquid Extracts. Foods, 10(6).

Losito, I., Abbattista, R., De Ceglie, C., Castellaneta, A., Calvano, C.D., & Cataldi, T.R.I. (2021). Bioactive Secoiridoids in Italian Extra-Virgin Olive Oils: Impact of Olive Plant Cultivars, Cultivation Regions and Processing. Molecules, 26(3), 1-21.

Luzi, F., Pannucci, E., Clemente, M., Grande, E., Urciuoli, S., Romani, A., Torre, L., Puglia, D., Bernini, R., & Santi, L. (2021). Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules, 26(7).

Madureira, J., Melgar, B., Santos-Buelga, C., Margaça, FMA, Ferreira ICFR, Barros L, Cabo Verde S. Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors. 2021; 9(8), 1-16.

Maraulo, G. E., Ferreira, C. D. S., Mazzobre, M. F. (2021). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45, 1-13.

Martínez-Navarro, E. M., Cebrián-Tarancón, C., Moratalla-López, N., Lorenzo, C., Alonso, G. L., & Salinas, R. M. (2020). Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products. Journal of the Science Food and Agriculture.

Marx, I. M. G., Casal, S., Rodrigues, N., Pinho, T., Veloso, A. C. A, Pereira, J. A., & Peres, A. M. (2021). Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chemistry, 337, 1-7.

Mastralexi, A., & Tsimidou, M. Z. (2021). The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation. Molecules, 26(11).

Monteleone, J. I., Sperlinga, E., Siracusa, L., Spagna, G., Parafati, L., Todaro, A., & Palmeri, R. (2021). Water as a Solvent of Election for Obtaining Oleuropein-Rich Extracts from Olive (Olea europaea) Leaves. Agronomy, 11(3), 1-11.

Moussa, I. D. B., Maalej, A., Masmoudi, M. A., Feki, F., Choura, S., Baccar, N., Jelail, L., Karray,F., Chamkha, M., & a and Sayadi, S. (2021). Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. Journal of the Science of Food and Agriculture. 1-12.

Muñoz-González, I., Ruiz-Capillas, C., Salvador, M., & Herrero, A. M. (2021). Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 339, 1-8.

Murillo-Cruz, M. C., Chova, M., & Bermejo-Román, R. (2021). Effect of adding fungal β-carotene to picual extra virgin olive oils on their physical and chemical properties. Journal of Food Processing and Preservation, 45, 1-10.

Naija, D. S., Gueddes, S. B. M., Flamini, G., Khiareddine, H. J., Remadi, M. D., Mariem, F. B., Ghariani, W., & Braham, M. (2021). Assessment of Antioxidant and Antimicrobial Compounds of Volatiles from Leaves, Stems and Flowers of Olives. Polish Journal Environmental Studies, 30(2), 1325-1338.

Nemli, E., Ozakdogan, S., Tomas, M., McClements, D. J., & Capanoglu, E. (2021). Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophysics, 16, 355-364.

Niccolai, A.,Venturi, M., Galli, V., Pini, N., Rodolfi, L., Biondi, N., Granchi, L., & Tredicia, M. R. (2021). Vegetable oils protect phycocyanin from thermal degradation during cooking of spirulina-based “crostini”. LWT – Food Science and Technology, 138, 1-7.

Nissen, L., Casciano, F., Chiarello, E., Di Nunzio, M., Bordoni, A., & Gianotti, A. (2021). Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients, 13(3), 1-17.

Nowak, D., Gośliński, M., & Popławsk, C. (2021). Antioxidant Properties and Fatty Acid Profile of Cretan Extra Virgin Bioolive Oils: A Pilot Study. International Journal of Food Science, 1-6.

Olmo-Cunillera, A., Lozano-Castellón, J., Pérez, M., Miliarakis, E., Tresserra-Rimbau, A., Ninot, A., Romero-Aroca, A., Lamuela-Raventós, R. M., & Vallverdú-Queralt, (2021). A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants, 10(11), 1-17.

Páscoa, R. N. M. J., Nunes, M. A., Reszczyński, F., Costa, A. S. G., Oliveira, M. B. P. P., & Alves, R. C. (2021). Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars. Waste and Biomass Valorization, 12, 4901–4913.

Polari, J. J., Mori, M., Wang, S. C. (2021). Virgin Olive Oils from Super-High-Density Orchards in California: Impact of Cultivar, Harvest Time, and Crop Season on Quality and Chemical Composition. European Journal of Lipid Science and Technology, 123(3), 1-35.

Popovi´c , M., Špika, M. J., Bratinˇcevi´c, M. V., Ninˇcevi´c, T., Mateškovi´c, A., Manduši´c, M., Rošin, J., Nazli´c, M., Dunki´c, V., & Vitanovi´c, E. (2021). Essential Oil Volatile Fingerprint Differentiates Croatian cv. Oblica from Other Olea europaea L. Cultivars. Molecules, 26(12).

Revelou, P. K., Xagoraris, M., Alexandropoulou, A., Kanakis, C., D., Papadopoulos, G. K., Pappas, C. S., & Tarantilis, P. A. (2021). Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules, 26(14).

Ribeiro, T. B., Oliveira, A., Coelho, M., Veiga, M., Costa, E. M., Silva, S., Nunes, J., Vicente, A. A., & Pintado, M. (2021). Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science Food and Agriculture, 101(5), 1963-1978.

Ruiz-Méndez , M. V., Márquez-Ruiz, G., Holgado, F., & Velasco, J. (2021). Stability of Bioactive Compounds in Olive-Pomace Oil at Frying Temperature and Incorporation into Fried Foods. Foods, 10(12).

Russo, M., Bonaccorsi, I. L., Cacciola, F., Dugo, L., Gara, L. de., Dugo, P., & Mondello, L. (2021). Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Natural Product Research, 35(21), 4182-4187.

Sabetta, W., Mascio, I., Squeo, G., Gadaleta, S., Flamminii, F., Conte, P., Mattia, C. D. D., Piga, A., Caponio, F., & Montemurro, C. (2021). Bioactive Potential of Minor Italian Olive Genotypes from Apulia, Sardinia and Abruzzo. Foods, 10(6).

Sanchez-Rodriguez, E., Vazquez-Aguilar, L. A., Biel-Glesson, S., Fernandez-Navarro, J. R., Espejo-Calvo, J. A., Olmo-Peinado, J. M., Torre, R., Fito-Colomer, M., Covas, M. I., Romero, C., Brenes, M., Victoria , E. M. D., Gil, A., & Mesa, M. D. (2021). May bioactive compounds from the olive fruit improve the postprandial insulin response in healthy adults? Journal of Functional Foods, 83.

Sharma, M., Hussain, S., Shalima, T., Aav, R., & Bhat, R. (2022). Valorization of seabuckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Industrial Crops and Products, 175, 1-9.

Sicari, V., Leporini, M., Romeo, R., Poiana, M., Tundis, R., & Loizzo, M. R. (2021). Shelf-Life Evaluation of “San Marzano” Dried Tomato Slices Preserved in Extra Virgin Olive Oil. Foods, 10(8).

Tague-Sutcliffe, J. (1992). An introduction to informetrics. Information Processing & Management, 28(1), 1-3.

Tirado, D. F., Latini, A., Calvo, L. (2021). The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. Journal of Food Engineering, 290, 1-9.

Tundis, R., Conidi, C., Loizzo, M.R., Sicari, V., Romeo, R., & Cassano, A. (2021). Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules, 26(6), 1-13.

Vehapi, M., Yilmaz, A., & Özçimen, D. (2020). Fabrication of Oregano-Olive Oil Loaded PVA/Chitosan Nanoparticles via Electrospraying Method. Journal of Natural Fibers, 18(9), 1359-1373.

Xie, P., Cecchi, L., Bellumori, M., Balli, D., Giovannelli, L., Huang, L., & Mulinacci, N. (2021). Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods, 10(11), 1-17.

Yao, Y., Lin, J. J., Chee, X. Y. J., Liu, M. H., Khan, S. A, & Kim, J. E. (2021). Encapsulation of Lutein via Microfluidic Technology: Evaluation of Stability and In Vitro Bioaccessibility. Foods. 10(11), 1-13.

Publicado

27/07/2022

Cómo citar

BASSO, C.; ULIANA, G. C.; RICHARDS, N. S. P. S. Compuestos bioactivos presentes en el aceite de oliva y sus derivados: revisión de la literatura. Research, Society and Development, [S. l.], v. 11, n. 10, p. e196111032580, 2022. DOI: 10.33448/rsd-v11i10.32580. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32580. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas