Compostos bioativos presentes no azeite de oliva e seus subprodutos: revisão bibliográfica
DOI:
https://doi.org/10.33448/rsd-v11i10.32580Palavras-chave:
Azeite de oliva; Bioativos; Fenólicos.Resumo
O objetivo do estudo foi investigar acerca do que está sendo questionado por renomados pesquisadores em todas as partes do mundo, ou seja, especular em relação aos países que mais publicam quando o assunto se refere a azeite e seus subprodutos, quais são os maiores produtores, qual a qualidade desses produtos oferecidos ao mercado, quais as melhores técnicas para preservar os compostos benéficos à saúde, além de lacunas que possam instigar a mais pesquisas elucidativas. Ocorreu através de revisão da literatura, utilizando os descritores ¨Azeite de Oliva¨ e ¨Bioativos¨. A pesquisa foi refinada almejando como forma de documento somente artigos, estes com publicação nos anos de 2021 e 2022. Posteriormente os artigos selecionados foram direcionados para análise bibliométrica. Em posse dos 109 artigos pré-selecionados, fez-se um novo refinamento, analisando-se então 78 artigos, os quais foram categorizados em cinco tópicos de maior importância: Resíduos da produção do azeite de oliva, processo tecnológico para análise do azeite, parâmetros químicos de diferentes cultivares, compostos bioativos, processo para determinação dos compostos bioativos. Após análise minuciosa de todos os artigos selecionados, referente inicialmente a compostos bioativos e azeite de oliva, e no decorrer adicionado subprodutos da produção do azeite, pode-se comprovar acerca dos benefícios dos compostos bioativos, formas de melhor preservá-los, além de algumas tendências em relação a sustentabilidade e preservação do meio ambiente, e por fim, identificação de métodos que podem se tornar promissores: bioinformática a fim de predizer propriedades medicinais e análise sensorial corroborando com técnicas analíticas e químicas.
Referências
Alemán-Jiménez, C., Domínguez-Perles, R., Fanti, F., Gallego-Gómez, J. I., Simonelli-Muñoz, A., Moine, E., Durand, T., Crauste, C., Gil-Izquierdo, A., & Medina, S. (2021). Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchemical Journal, 170.
Alongi, M., Lucci, P., Clodoveo, M. L., Schena, F. P., & Calligaris, S. (2022). Oleogelation of extra virgin olive oil by different oleogelators affects the physical properties and the stability of bioactive compounds. Food Chemistry, 368.
Andreou, V., Chanioti, S., Stergiou, P., & Katsaros, G., (2021). Valorization of the Olive Oil Production Residue: Healthy Ingredient for Developing High Value-Added Spread. Sustainability, 13(24), 1-18.
Balli, D., Cecchi, L., Innocenti, M., Bellumori, M., & Mulinacci, N. (2021). Food by-products valorisation: Grape pomace and olive pomace as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chemistry, 355.
Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., & Stefani, M. (2021). Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants, 10(7).
Cádiz-Gurrea, M. D. L., Pinto, D., Delerue-Matos, C., & Rodrigues, F. (2021). Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics - A Preliminary Study. Antioxidants, 10(2), 1-18.
Cairone, F., Petralito, S., Scipione, L., & Cesa, S. (2021). Study on Extra Virgin Olive Oil: Quality Evaluation by Anti-Radical Activity, Color Analysis, and Polyphenolic HPLC-DAD Analysis. Foods, 10(8).
Cappelli, K., Ferlisi, F., Mecocci, S., Maranesi, M., Trabalza-Marinucci, M., Zerani, M., Dal Bosco, A., & Acuti, G. (2021). Dietary Supplementation of Olive Mill Waste Water Polyphenols in Rabbits: Evaluation of the Potential Effects on Hepatic Apoptosis, Inflammation and Metabolism through RT-qPCR Approach. Animals, 11(10), 1-12.
Capriotti, A. L., Cerrato, A., Aita, S. E., Montone, C. M., Piovesana, S., Laganà, A., & Cavaliere, C. (2021). Degradation of the polar lipid and fatty acid molecular species in extra virgin olive oil during storage based on shotgun lipidomics. Journal of Chromatography A, 1639, 1-9.
Chanioti, S., Katsouli, M., & Tzia, C. (2021). Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules, 26(6), 1-18.
Cherif, M., Rodrigues, N., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2021). Kinetic study of the microwave-induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil. Journal of the American Oil Chemists´ Society, 1-12.
Del Coco, L., Girelli, C. R., Angil`e, F., Mascio, I., Montemurro, C., Distaso, E., Tamburrano, P., Chiurlia, S., Clodoveo, M. L., Corbo, F., Amirante, R., Schena, F. P., & Fanizzi, F. P. (2021). NMR-based metabolomic study of Apulian Coratina extra virgin olive oil extracted with a combined ultrasound and thermal conditioning process in an industrial setting. Food Chemistry, 345.
Djemaa Landri, K., Hamri Zeghichi, S., Belkhiri Beder,W., Krisa, S., Cluzet, S., Richard, T.,Valls, J., Kadri, N., & Madani, K. (2021). Phenolic content, antioxidant and anti infammatory activities of some Algerian olive stone extracts obtained by conventional solvent and microwave assisted extractions under optimized conditions. Journal of Food Measurement and Characterization.
El-Baz, H. A., Elazzazy, A. M., Saleh, T. S., Dritsas, P., Mahyoub, J. A., Baeshen, M. N., Madian, H. R., Alkhaled, M., & Aggelis, G. (2020). Single Cell Oil (SCO)–Based Bioactive Compounds: I—Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities. Applied Biochemistry and Biotechnology 193, 822–845.
Fabiani, R., Vella, N., & Rosignoli, P. (2021). Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review. Molecules, 26(2), 1-17.
Fatoki, T. H., Akintayo, C. O., & Ibraheem, O. (2021). Exploration bio-informatique de l'huile d'olive : cibles molecularires et proprietés des principaux constituants bioactifs. OCL - Oleaginosas e gorduras, Culturas e Lipídios, 28(36), 1-8.
Federica, F., Elettra, M., Lilia, N., Luciano, P., Angelo, C., & Daniela, D. M. C. (2021). The effect of harvesting time on olive fruits and oils quality parameters of Tortiglione and Dritta olive cultivars. European Journal of Lipid Science and Technology.
Hannachi, H., & Elfalleh, W., (2020). Enrichment of Olive Oil with Polyphenols from Oleaster Leaves Using Central Composite Design for the Experimental Measurements. Analytical Letters, 54(4), 590-607.
Hernáez, Á., Jaramillo, S., García-Borrego, A., Espejo-Calvo, J.A., Covas, M.-I., Blanchart, G., de la Torre, R., Carrasco-Pancorbo, A., Mesa, M. D., Fernández-Prior, M. Á., Castañer, O., Fitó, M. (2021). From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants, 10(2), 1-14.
Karakoç, M. D., & Sekkin, S. (2021). Effects of Oleuropein on Epirubicin and Cyclophosphamide Combination Treatment in Rats. Turkish Journal of Pharmaceutical Sciences, 18(4), 420-429.
Karampetsou, K., Koutsoni, O. S, Gogou, G., Angelis, A., Skaltsounis, L. A, & Dotsika, E. (2021). Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. Plos Neglected Tropical Diseases, 15(1), 1-30.
Katsinas, N., Silva, A. B. D., Enríquez-de-Salamanca, A., Fernández, N., Bronze, M. R., & Rodríguez-Rojo, S. (2021). Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustainable Chemistry & Engineering, 9, 5590-5602.
Kritikou, E., Kalogiouri, N. P., Kostakis, M., Kanakis, D. C., Martakos, I., Lazarou, C., Pentogennis, M., & Thomaidis, N. S. (2021). Geographical Characterization of Olive Oils from the North Aegean Region Based on the Analysis of Biophenols with UHPLC-QTOF-MS. Foods, 10(9), 1-22.
Loizzo, M. R., Bonesi, M., Falco, T., Leporini, M., Pagliuso, M., Sicari, V., & Tundis, R. (2021). Journal of Food Processing and Preservation, 1-11.
López-Salas, L., Cea, I., Borrás-Linares, I., Emanuelli, T., Robert, P., Segura-Carretero, A., & Lozano-Sánchez, J. (2021). Preliminary Investigation of Different Drying Systems to Preserve Hydroxytyrosol and Its Derivatives in Olive Oil Filter Cake Pressurized Liquid Extracts. Foods, 10(6).
Losito, I., Abbattista, R., De Ceglie, C., Castellaneta, A., Calvano, C.D., & Cataldi, T.R.I. (2021). Bioactive Secoiridoids in Italian Extra-Virgin Olive Oils: Impact of Olive Plant Cultivars, Cultivation Regions and Processing. Molecules, 26(3), 1-21.
Luzi, F., Pannucci, E., Clemente, M., Grande, E., Urciuoli, S., Romani, A., Torre, L., Puglia, D., Bernini, R., & Santi, L. (2021). Hydroxytyrosol and Oleuropein-Enriched Extracts Obtained from Olive Oil Wastes and By-Products as Active Antioxidant Ingredients for Poly (Vinyl Alcohol)-Based Films. Molecules, 26(7).
Madureira, J., Melgar, B., Santos-Buelga, C., Margaça, FMA, Ferreira ICFR, Barros L, Cabo Verde S. Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors. 2021; 9(8), 1-16.
Maraulo, G. E., Ferreira, C. D. S., Mazzobre, M. F. (2021). β-cyclodextrin enhanced ultrasound-assisted extraction as a green method to recover olive pomace bioactive compounds. Journal of Food Processing and Preservation, 45, 1-13.
Martínez-Navarro, E. M., Cebrián-Tarancón, C., Moratalla-López, N., Lorenzo, C., Alonso, G. L., & Salinas, R. M. (2020). Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products. Journal of the Science Food and Agriculture.
Marx, I. M. G., Casal, S., Rodrigues, N., Pinho, T., Veloso, A. C. A, Pereira, J. A., & Peres, A. M. (2021). Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chemistry, 337, 1-7.
Mastralexi, A., & Tsimidou, M. Z. (2021). The Potential of Virgin Olive Oil from cv. Chondrolia Chalkidikis and Chalkidiki (Greece) to Bear Health Claims according to the European Legislation. Molecules, 26(11).
Monteleone, J. I., Sperlinga, E., Siracusa, L., Spagna, G., Parafati, L., Todaro, A., & Palmeri, R. (2021). Water as a Solvent of Election for Obtaining Oleuropein-Rich Extracts from Olive (Olea europaea) Leaves. Agronomy, 11(3), 1-11.
Moussa, I. D. B., Maalej, A., Masmoudi, M. A., Feki, F., Choura, S., Baccar, N., Jelail, L., Karray,F., Chamkha, M., & a and Sayadi, S. (2021). Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. Journal of the Science of Food and Agriculture. 1-12.
Muñoz-González, I., Ruiz-Capillas, C., Salvador, M., & Herrero, A. M. (2021). Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 339, 1-8.
Murillo-Cruz, M. C., Chova, M., & Bermejo-Román, R. (2021). Effect of adding fungal β-carotene to picual extra virgin olive oils on their physical and chemical properties. Journal of Food Processing and Preservation, 45, 1-10.
Naija, D. S., Gueddes, S. B. M., Flamini, G., Khiareddine, H. J., Remadi, M. D., Mariem, F. B., Ghariani, W., & Braham, M. (2021). Assessment of Antioxidant and Antimicrobial Compounds of Volatiles from Leaves, Stems and Flowers of Olives. Polish Journal Environmental Studies, 30(2), 1325-1338.
Nemli, E., Ozakdogan, S., Tomas, M., McClements, D. J., & Capanoglu, E. (2021). Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophysics, 16, 355-364.
Niccolai, A.,Venturi, M., Galli, V., Pini, N., Rodolfi, L., Biondi, N., Granchi, L., & Tredicia, M. R. (2021). Vegetable oils protect phycocyanin from thermal degradation during cooking of spirulina-based “crostini”. LWT – Food Science and Technology, 138, 1-7.
Nissen, L., Casciano, F., Chiarello, E., Di Nunzio, M., Bordoni, A., & Gianotti, A. (2021). Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients, 13(3), 1-17.
Nowak, D., Gośliński, M., & Popławsk, C. (2021). Antioxidant Properties and Fatty Acid Profile of Cretan Extra Virgin Bioolive Oils: A Pilot Study. International Journal of Food Science, 1-6.
Olmo-Cunillera, A., Lozano-Castellón, J., Pérez, M., Miliarakis, E., Tresserra-Rimbau, A., Ninot, A., Romero-Aroca, A., Lamuela-Raventós, R. M., & Vallverdú-Queralt, (2021). A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants, 10(11), 1-17.
Páscoa, R. N. M. J., Nunes, M. A., Reszczyński, F., Costa, A. S. G., Oliveira, M. B. P. P., & Alves, R. C. (2021). Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars. Waste and Biomass Valorization, 12, 4901–4913.
Polari, J. J., Mori, M., Wang, S. C. (2021). Virgin Olive Oils from Super-High-Density Orchards in California: Impact of Cultivar, Harvest Time, and Crop Season on Quality and Chemical Composition. European Journal of Lipid Science and Technology, 123(3), 1-35.
Popovi´c , M., Špika, M. J., Bratinˇcevi´c, M. V., Ninˇcevi´c, T., Mateškovi´c, A., Manduši´c, M., Rošin, J., Nazli´c, M., Dunki´c, V., & Vitanovi´c, E. (2021). Essential Oil Volatile Fingerprint Differentiates Croatian cv. Oblica from Other Olea europaea L. Cultivars. Molecules, 26(12).
Revelou, P. K., Xagoraris, M., Alexandropoulou, A., Kanakis, C., D., Papadopoulos, G. K., Pappas, C. S., & Tarantilis, P. A. (2021). Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules, 26(14).
Ribeiro, T. B., Oliveira, A., Coelho, M., Veiga, M., Costa, E. M., Silva, S., Nunes, J., Vicente, A. A., & Pintado, M. (2021). Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science Food and Agriculture, 101(5), 1963-1978.
Ruiz-Méndez , M. V., Márquez-Ruiz, G., Holgado, F., & Velasco, J. (2021). Stability of Bioactive Compounds in Olive-Pomace Oil at Frying Temperature and Incorporation into Fried Foods. Foods, 10(12).
Russo, M., Bonaccorsi, I. L., Cacciola, F., Dugo, L., Gara, L. de., Dugo, P., & Mondello, L. (2021). Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Natural Product Research, 35(21), 4182-4187.
Sabetta, W., Mascio, I., Squeo, G., Gadaleta, S., Flamminii, F., Conte, P., Mattia, C. D. D., Piga, A., Caponio, F., & Montemurro, C. (2021). Bioactive Potential of Minor Italian Olive Genotypes from Apulia, Sardinia and Abruzzo. Foods, 10(6).
Sanchez-Rodriguez, E., Vazquez-Aguilar, L. A., Biel-Glesson, S., Fernandez-Navarro, J. R., Espejo-Calvo, J. A., Olmo-Peinado, J. M., Torre, R., Fito-Colomer, M., Covas, M. I., Romero, C., Brenes, M., Victoria , E. M. D., Gil, A., & Mesa, M. D. (2021). May bioactive compounds from the olive fruit improve the postprandial insulin response in healthy adults? Journal of Functional Foods, 83.
Sharma, M., Hussain, S., Shalima, T., Aav, R., & Bhat, R. (2022). Valorization of seabuckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Industrial Crops and Products, 175, 1-9.
Sicari, V., Leporini, M., Romeo, R., Poiana, M., Tundis, R., & Loizzo, M. R. (2021). Shelf-Life Evaluation of “San Marzano” Dried Tomato Slices Preserved in Extra Virgin Olive Oil. Foods, 10(8).
Tague-Sutcliffe, J. (1992). An introduction to informetrics. Information Processing & Management, 28(1), 1-3.
Tirado, D. F., Latini, A., Calvo, L. (2021). The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. Journal of Food Engineering, 290, 1-9.
Tundis, R., Conidi, C., Loizzo, M.R., Sicari, V., Romeo, R., & Cassano, A. (2021). Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules, 26(6), 1-13.
Vehapi, M., Yilmaz, A., & Özçimen, D. (2020). Fabrication of Oregano-Olive Oil Loaded PVA/Chitosan Nanoparticles via Electrospraying Method. Journal of Natural Fibers, 18(9), 1359-1373.
Xie, P., Cecchi, L., Bellumori, M., Balli, D., Giovannelli, L., Huang, L., & Mulinacci, N. (2021). Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods, 10(11), 1-17.
Yao, Y., Lin, J. J., Chee, X. Y. J., Liu, M. H., Khan, S. A, & Kim, J. E. (2021). Encapsulation of Lutein via Microfluidic Technology: Evaluation of Stability and In Vitro Bioaccessibility. Foods. 10(11), 1-13.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Cristiana Basso; Greici C. Uliana; Neila S. P. S. Richards
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.