Efectos inducidos por la luz contra Candida albicans y Staphylococcus aureus

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32600

Palabras clave:

Fototerapia; Candida albicans; Staphylococcus aureus; Estrés oxidativo; Peroxidación lipídica.

Resumen

Objetivos: El presente estudio evaluó la acción de fuentes de luz LED a diferentes longitudes de onda sobre la viabilidad celular, la peroxidación lipídica y la expresión génica Top I y II de Candida albicans y Staphylococcus aureus. Métodos: Los cultivos planctónicos se sometieron a iluminación y la proliferación celular posterior a la irradiación se evaluó mediante la cuantificación de la actividad mitocondrial metabólica. Se evaluó la respuesta de los microorganismos a los tratamientos. Resultados: La reducción de la viabilidad celular (UFC/mL) ocurrió solo para el hongo en 0,5 y 0,6 log10 usando LED amarillo 0,1 y 10 J/cm2, respectivamente. Para S. aureus, ninguna de las longitudes de onda evaluadas redujo la viabilidad celular frente al control. La producción de ROS intracelular se produjo en todas las dosis de luz y longitudes de onda probadas, a excepción de 0,1 J/cm2 de LED amarillo para ambos microorganismos. La peroxidación de lípidos ocurrió solo para C. albicans después de la exposición a 10 J/cm2 de LED amarillo, 15 y 50 J/cm2 de LED azul y 300 y 500 lux de LED blanco. Las dos dosis de luz azul y luz roja disminuyeron la expresión de TOP II de C. albicans y TOP I de S. aureus. Las dos dosis de luz amarilla y blanca promovieron un aumento en la expresión de los genes que codifican TOP II y TOP I para ambas especies. Conclusión: Los resultados demostraron que los mecanismos de acción de los LED blancos y en las longitudes de onda azul (455 nm), rojo (660 nm) y amarillo (590 nm) parecen estar relacionados con la producción de ROS, la peroxidación lipídica y el daño del DNA.

Biografía del autor/a

Rui Oliveira, Universidade Estadual Paulista

c Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

d Center of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.

Citas

Alonso, G.C., Pavarina, A.C., Sousa, T.V. & Klein, M.I. (2018). A quest to find good primers for gene expression analysis of Candida albicans from clinical samples. J Microbiol Methods. 147, 1-13.

Altieri, K.T., Sanitá, P.V., Machado, A.L., Giampaolo, E.T., Pavarina, A.C. & Vergani, C.E. (2012). Effectiveness of two disinfectant solutions and microwave irradiation in disinfecting complete dentures contaminated with methicillin-resistant Staphylococcus aureus. J Am Dent Assoc. 143(3), 270-7.

Barneck, M.D., Rhodes, N.L., de la Presa, M., Allen, J.P., Poursaid, A.E., Nourian, M.M., Firpo, M.A. & Langell, J.T. (2016). Violet 405-nm light: a novel therapeutic agent against common pathogenic bacteria. J Surg Res. 206, 316–24.

Carmello, J.C., Pavarina, A.C., Oliveira, R. & Johansson, B. (2015). Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans. FEMS Yeast Res. 15(4), fov018.

Cheeseman, K. H. (1993). Mechanisms and effects of lipid peroxidation. Mol Aspects Med. 14, 191-7.

Cieplik, F., Spath, A., Leibl, C., Gollmer, A., Regensburger, J., Tabenski, L., Hiller, K.A., Maisch, T. & Schmalz, G. (2014). Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Investig. 18, 1763–9.

Corbett, K. D. & Berger, J. M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA Topoisomerases. Annu Rev Biophys Biomol Struct. 33, 95 – 118.

Costa, A. C., Chibebe Junior, J. & Pereira, C. A. (2010). Susceptibility of planktonic cultures of Streptococcus mutans to photodynamic therapy with a light-emitting diode. Braz. Oral. Res. 24(4), 413-418.

Cury, J.A. & Koo, H.. Extraction and purification of total RNA from Streptococcus mutans biofilms (2007). Anal Biochem. 365, 208-14.

Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., Nair, A. R., Munters, E., Artois, T. J., Nawrot, T., Vangronsveld, J. & Smeets, K. (2010). Cadmium stress: an oxidative challenge. Biometals. 927-40.

Dai, T., Gupta, A., Murray, C.K., Vrahas, M.S., Tegos, G.P. & Hamblin, M.R. (2012). Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat. 15, 23–223.

de Freitas, L.F. & Hamblin, M.R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 22, 17.

Denstaedt, S. J., Singer, B. H. & Standiford, T. J.. (2018). Sepsis and Nosocomial Infection: Patient Characteristics, Mechanisms, and Modulation. Front Immunol. 23(9) - 2446.

Devasagayam, T. P. A., Boloor, K. K. & Ramasarma, T. (2003). Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 40, 300-8.

Enwemeka, C.S., Williams, D., Hollosi S., Yens, D. & Enwemeka, S.K. (2008). Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10), 734–737.

Feuerstein, O. (2012). Light therapy: complementary antibacterial treatment of oral biofilm. Adv Dent Res. 24(2), 103-7.

Feuerstein, O., Ginsburg, I., Dayan, E., Veler, D. & Weiss, E.I. (2005). Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol. 81(5), 1186-9.

Feuerstein, O., Persman, N. & Weiss, E.I. (2004). Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: An in vitro study. Photochem Photobiol 80(3), 412–15.

Fontana, C. R., Song, X., Polymeri, A., Goodson, J. M., Xiaoshan, W. & Soukos, N. S. (2015). The effect of blue light on periodontal biofilm growth in vitro. Lasers in Medical Science, 30, 2077-86.

Gabrielson, J., Hart, M., Jarelöv, A., Kühn, I., McKenzie, D. & Möllby, R. (2002). Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Meth. 50, 63–73.

Galbis-Martinez, M., Padmanabhan, S., Murillo, F.J. & Elias-Arnanz, M. (2012). CarF mediates signaling by singlet oxygen, generated via photoexcited protoporphyrin IX, in Myxococcus xanthus light-induced carotenogenesis. J Bacteriol. 194, 1427–36.

Ganz, R.A., Viveiros, J., Ahmad, A., Ahmadi, A., Khalil, A., Tolkoff, M.J., Nishioka, N.S. & Hamblin, M.R. (2005). Helicobacter pylori in patients can be killed by visible light. Lasers Surg Med 36(4), 260–265.

Guffey, J.S. & Wilborn, J. (2006). In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24(6), 684–8.

Gupta, S., Maclean, M., Anderson, J.G., MacGregor, S.J., Meek, R.M. & Grant, M.H. (2015). Inactivation of micro-organisms isolated from infected lower limb arthroplasties using high-intensity narrow-spectrum (HINS) light. Bone Joint J. 97-B, 283–88.

Halstead, F.D., Thwaite, J.E., Burt, R., Laws, T.R., Raguse, M., Moeller, R., Webber, M.A. & Oppenheim, B.A. (2016). Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms. Appl Environ Microbiol. 82, 4006–16.

Khot, P. D., Suci, P. A. & Tyler, B. J. (2008). Candida albicans viability after exposure to amphotericin B: assessment using metabolic assays and colony forming units. J Microbiol Methods 72, 268-74.

Kim, S., Kim, J., Lim, W., Jeon, S., Kim, O., Koh, J.T., Kim, C.S. & Choi, H. (2013). In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomed Laser Surg. 31, 554–62.

Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S.M., Thompson, D.L., Wilson, L.E. & Fridkin, S.K. (2014). Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 370, 1198–1208.

Masson-Meyers, D.S., Bumah, V.V., Biener, G., Raicu, V. & Enwemeka, C.S. (2015). The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med Sci. 30, 2265–71.

Murdoch, L.E., McKenzie, K., Maclean, M., Macgregor, S.J. & Anderson, J.G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 117, 519–27.

Nawrot, B., Sochacka, E. & Düchler, M. (2011). tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci. 68, 4023-32.

Nolan, T., Hands, R., Bustin, S. (2006). Quantification of mRNA using real time RT-PCR. Nature Protocols. 1. 1559-82.

Nussbaum, E.L., Lilge, L. & Mazzulli, T. (2002). Effects of 810 nm laser irradiation on in vitro growth of bacteria: Comparison of continuous wave and frequency modulated light. Lasers Surg Med 31(5), 343–51.

O’Donoghue, B., NicAogain, K., Bennett, C., Conneely, A., Tiensuu, T., Johansson, J. & O’Byrne, C. (2016). Blue-light inhibition of Listeria monocytogenes growth Is mediated by reactive oxygen species and is influenced by sigma B and the blue-Light sensor Lmo0799. Appl Environ Microbiol. 82, 4017–27.

Ognjanović, B. I., Marković, S. D., Pavlović, S. Z., Zikić, R. V., Stajn, A. S. & Saicić, Z. S. (2008). Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res. 57, 403-11.

Pryor, W. (1991). The antioxidant nutrients and disease prevention— what, do we know and what, do we need to find out? Am J Clin Nulr. 53, 391S–393S.

Ramakrishnan, P., Maclean, M., MacGregor, S.J., Anderson, J.G. & Grant, M.H. (2016). Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species. Toxicology in vitro: an international journal published in association with BIBRA. 33, 54–62.

Rosario, M., Decastro, I. C. & Campos, P. F. (2012). Applicability of antimicrobial photodynamic therapy in dentistry. AOSAR 2 (2), 88-93.

Silbert, Bird, P. S., Milburn, G. J. (2000). Disinfection of root canals by laser dye photosensitization. J. dental Res. 569.

Silva, S., Henriques, M., Oliveira, R., Williams, D. & Azeredo, J. (2010). In vitro biofilm activity of non-Candida albicans Candida species. Curr Microbiol. 61, 534-40.

Silver, L. L. (2011). Challenges of antibacterial discovery. Clinical microbiology reviews. 24, 71–109.

Soukos, N.S., Som, S., Abernethy, A.D., Ruggiero, K., Dunham, J., Lee, C., Doukas, A.G. & Goodson, J.M. (2005). Phototargeting oral blackpigmented bacteria. Antimicrob Agents Chemother. 49(4), 1391–96.

Wang, Y., Wanga, Y., Wanga, Y., Murrayf, C. K., Hamblin, M. R., Hooperg, D. C. & Dai T. (2017). Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist Updat. 33-35, 1–22.

Wi, H. S., Na, E. Y., Yun, S. J. & Lee, J. B. (2012). The Antifungal Effect of Light Emitting Diode on Malassezia Yeasts. J Dermatol Sci 67, 3-8.

Yin, J.L., Shackel, N.A., Zekry, A. & McGuinness, P.H. (2001). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol. 79, 213-21.

Yoshida, A., Sasaki, H., Toyama, T., Araki, M., Fujioka, J., Tsukiyama, K., Hamada, N. & Yoshino, F. (2017). Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific reports. 7, 5225.

Zeina, B., Greenman, J., Purcell, W.M. & Das, B. (2001). Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144, 274–8.

Zhang, Y., Zhu, Y., Chen, J., Wang, Y., Sherwood, M.E., Murray, C.K., Vrahas, M.S., Hooper, D.C., Hamblin, M.R. & Dai, T. (2016). Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence. 7, 536–45.

Descargas

Publicado

22/07/2022

Cómo citar

CARMELLO, J. C. .; JORDÃO, C. C.; DIAS, L. M. .; SOUSA, T. V. de .; OLIVEIRA, R.; PAVARINA, A. C. Efectos inducidos por la luz contra Candida albicans y Staphylococcus aureus. Research, Society and Development, [S. l.], v. 11, n. 10, p. e23111032600, 2022. DOI: 10.33448/rsd-v11i10.32600. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32600. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud