Detección in vitro e in silico de amidas frente a formas sexuales de Plasmodium falciparum

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32756

Palabras clave:

P. falciparum; Gametocitos; Malaria; Bloqueo de transmisión.

Resumen

Objetivo: Evaluar la actividad de estos compuestos en las formas sexuales de Plasmodium falciparum y determinar las propiedades farmacocinéticas teóricas de los compuestos mediante un ensayo in silico. Métodos: Para evaluar la inhibición de las formas exflagelantes se utilizó la cepa de Plasmodium falciparum NF54 para la producción de gametocitos in vitro. Para las pruebas in silico, se utilizó el programa ADMETlab para identificar las propiedades farmacocinéticas teóricas de todos los compuestos. Resultados: varias amidas naturales y sintéticas probadas no se destacan como posibles bloqueadores de la transmisión de la malaria. Sin embargo, mostraron una inhibición moderada en el bloqueo de la exflagelación. Los resultados del cribado virtual permitieron conocer y explorar interesantes propiedades farmacocinéticas teóricas de esta clase de compuestos, como la permeabilidad moderada como células Caco-2 del compuesto 14f; todos pueden ser dañinos pero no letales (LD50); solo el compuesto 14f puede causar daño a algunos alimentos (LHID); los compuestos 1a, 1b, 1g y 1k pueden administrarse en su máximo diario, teniendo siempre en cuenta que 1g y 1k pueden administrarse en su máximo diario; bajo rendimiento (CL); alta unión a proteínas plasmáticas para los compuestos 1a, 14f y 18a; volumen de distribución óptimo para 1b, 1g, 1k, 18a y 18b. Consideraciones finales: Los resultados obtenidos contribuyen a aumentar la base de datos sobre el perfil de esta clase de compuestos y la acción antipalúdica.

Citas

Bains, W., Basman, A., & White, C. (2004). HERG binding specificity and binding site structure: evidence from a fragment-based evolutionary computing SAR study. Progress in Biophysics and Molecular Biology, 86(2), 205–233. doi: 10.1016/j.pbiomolbio.2003.09.001

Belpaire, F. M., & Bogaert, M. G. (2003). The Fate of Xenobiotics in Living Organisms. In The Practice of Medicinal Chemistry: Second Edition (Second Edi). Elsevier Inc. doi: 10.1016/B978-012744481-9/50034-9

Brasil, P., Zalis, M. G., de Pina-Costa, A., Siqueira, A. M., Júnior, C. B., Silva, S., Areas, A. L. L., Pelajo-Machado, M., de Alvarenga, D. A. M., da Silva Santelli, A. C. F., Albuquerque, H. G., Cravo, P., Santos de Abreu, F. V., Peterka, C. L., Zanini, G. M., Suárez Mutis, M. C., Pissinatti, A., Lourenço-de-Oliveira, R., de Brito, C. F. A., … Daniel-Ribeiro, C. T. (2017). Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. The Lancet Global Health, 5(10), 1038–1046. doi: 10.1016/S2214-109X(17)30333-9

Calit, J., Dobrescu, I., Gaitán, X. A., Borges, M. H., Ramos, M. S., Eastman, R. T., & Bargieri, D. Y. (2018). Screening the Pathogen Box for Molecules Active against Plasmodium Sexual Stages Using a New Nanoluciferase-Based Transgenic Line of P. berghei Identifies Transmission-Blocking Compounds. Antimicrobial Agents and Chemotherapy, 62(11). doi: 10.1128/AAC.01053-18

Cao, D.-S., Zhao, J.-C., Yang, Y.-N., Zhao, C.-X., Yan, J., Liu, S., Hu, Q.-N., Xu, Q.-S., & Liang, Y.-Z. (2012). In silico toxicity prediction by support vector machine and SMILES representation-based string kernel. SAR and QSAR in Environmental Research, 23(1–2), 141–153. doi: 10.1080/1062936X.2011.645874

Chalasani, N., Fontana, R. J., Bonkovsky, H. L., Watkins, P. B., Davern, T., Serrano, J., Yang, H., & Rochon, J. (2008). Causes, Clinical Features, and Outcomes From a Prospective Study of Drug-Induced Liver Injury in the United States. Gastroenterology, 135(6), 1924–1934. doi: 10.1053/j.gastro.2008.09.011

Colmenarejo, G., Lozano, S., González-Cortés, C., Calvo, D., Sanchez-Garcia, J., Matilla, J.-L. P., Leroy, D., & Rodrigues, J. (2018). Predicting transmission blocking potential of anti-malarial compounds in the Mosquito Feeding Assay using Plasmodium falciparum Male Gamete Inhibition Assay. Scientific Reports, 8(1), 7764. doi: 10.1038/s41598-018-26125-w

Delves, M. J., Miguel-Blanco, C., Matthews, H., Molina, I., Ruecker, A., Yahiya, S., Straschil, U., Abraham, M., León, M. L., Fischer, O. J., Rueda-Zubiaurre, A., Brandt, J. R., Cortés, Á., Barnard, A., Fuchter, M. J., Calderón, F., Winzeler, E. A., Sinden, R. E., Herreros, E., … Baum, J. (2018). A high throughput screen for next-generation leads targeting malaria parasite transmission. Nature Communications, 9(1), 3805. doi: 10.1038/s41467-018-05777-2

Delves, M. J., Ruecker, A., Straschil, U., Lelièvre, J., Marques, S., López-Barragán, M. J., Herreros, E., & Sinden, R. E. (2013). Male and Female Plasmodium falciparum Mature Gametocytes Show Different Responses to Antimalarial Drugs. Antimicrobial Agents and Chemotherapy, 57(7), 3268–3274. doi: 10.1128/AAC.00325-13

Delves, M. J., Straschil, U., Ruecker, A., Miguel-Blanco, C., Marques, S., Dufour, A. C., Baum, J., & Sinden, R. E. (2016). Routine in vitro culture of P. falciparum gametocytes to evaluate novel transmission-blocking interventions. Nature Protocols, 11(9), 1668–1680. doi: 10.1038/nprot.2016.096

Duffy, S., & Avery, V. M. (2013). Identification of inhibitors of Plasmodium falciparum gametocyte development. Malaria Journal, 12(1), 408. doi: 10.1186/1475-2875-12-408

Fokoue, H. H., Marques, J. V., Correia, M. V., Yamaguchi, L. F., Qu, X., Aires-de-Sousa, J., Scotti, M. T., Lopes, N. P., & Kato, M. J. (2018). Fragmentation pattern of amides by EI and HRESI: study of protonation sites using DFT-3LYP data. RSC Advances, 8(38), 21407–21413. doi: 10.1039/C7RA00408G

Food and Drug Administration (FDA). (2018). Highlights of Prescribing Information-Krintafel. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210795s000lbl.pdf

GHS. (2005). Globally Harmonized System of Classification and Labelling of Chemicals. https://unece.org/ghs-rev1-2005

GOODMAN, L. S., & GILMAN, A. (2012). Farmacocinética: a dinâmica da absorção, distribuição, ação e eliminação dos fármacos. In I. L. O. Buxton & L. Z. Benet (Orgs.), As Bases Farmacológicas da Terapêutica (12o ed, p. 1–2079). Porto Alegre: McGraw-Hill.

Grime, K. H., Barton, P., & McGinnity, D. F. (2013). Application of In Silico, In Vitro and Preclinical Pharmacokinetic Data for the Effective and Efficient Prediction of Human Pharmacokinetics. Molecular Pharmaceutics, 10(4), 1191–1206. doi: 10.1021/mp300476z

Hosey, C. M., & Benet, L. Z. (2015). Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions. Molecular Pharmaceutics, 12(5), 1456–1466. doi: 10.1021/mp500783g.Predicting

Jing, Y., Easter, A., Peters, D., Kim, N., & Enyedy, I. J. (2015). In silico prediction of hERG inhibition. Future Medicinal Chemistry, 7(5), 571–586. doi: 10.4155/fmc.15.18

Kerns, E. H., & Di, L. (2008a). Advantages of Good Drug-like Properties. In Drug-like Properties: Concepts, Structure Design and Methods (1o ed, p. 6–16). San Diego, USA: Elsevier. doi: 10.1016/B978-012369520-8.50003-6

Kerns, E. H., & Di, L. (2008b). hERG Blocking. In Drug-like Properties: Concepts, Structure Design and Methods (1o ed, p. 209–214). San Diego, USA: Elsevier. doi: 10.1016/B978-012369520-8.50017-6

Kerns, E. H., & Di, L. (2008c). Metabolic Stability. In Drug-like Properties: Concepts, Structure Design and Methods (1o ed, p. 137–II). San Diego, USA: Elsevier. doi: 10.1016/B978-012369520-8.50012-7

Kerns, E. H., & Di, L. (2008d). Pharmacokinetics. In Drug-like Properties: Concepts, Structure Design and Methods (1o ed, p. 228–241). San Diego, USA: Elsevier. doi: 10.1016/B978-012369520-8.50020-6

Kerns, E. H., & Di, L. (2008e). Plasma Protein Binding. In Drug-like Properties: Concepts, Structure Design and Methods (1o ed, p. 187–196). San Diego, USA: Elsevier. doi: 10.1016/B978-012369520-8.50015-2

Khoury, D. S., Cao, P., Zaloumis, S. G., & Davenport, M. P. (2020). Artemisinin Resistance and the Unique Selection Pressure of a Short-acting Antimalarial. Trends in Parasitology, 36(11), 884–887. doi: 10.1016/j.pt.2020.07.004

Kok-Yong, S., & Lawrence, L. (2015). Drug Distribution and Drug Elimination. In Basic Pharmacokinetic Concepts and Some Clinical Applications. InTech. doi: 10.5772/59929

Kumar, R., Sharma, A., Siddiqui, M. H., & Tiwari, R. K. (2018). Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms. Combinatorial Chemistry & High Throughput Screening, 21(1), 57–64. doi: 10.2174/1386207321666171218121557

Lambros, C., & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum Erythrocytic Stages in Culture. The Journal of Parasitology, 65(3), 418. doi: 10.2307/3280287

Leba, L.-J., Musset, L., Pelleau, S., Estevez, Y., Birer, C., Briolant, S., Witkowski, B., Ménard, D., Delves, M. J., Legrand, E., Duplais, C., & Popovici, J. (2015). Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay. Malaria Journal, 14(1), 234. doi: 10.1186/s12936-015-0752-x

Lombardo, F., Desai, P. V., Arimoto, R., Desino, K. E., Fischer, H., Keefer, C. E., Petersson, C., Winiwarter, S., & Broccatelli, F. (2017). In Silico Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-PK): Utility and Best Practices. An Industry Perspective from the International Consortium for Innovation through Quality in Pharmaceutical Development. Journal of Medicinal Chemistry, 60(22), 9097–9113. doi: 10.1021/acs.jmedchem.7b00487

Miao, J., Wang, Z., Liu, M., Parker, D., Li, X., Chen, X., & Cui, L. (2013). Plasmodium falciparum: Generation of pure gametocyte culture by heparin treatment. Experimental Parasitology, 135(3), 541–545. doi: 10.1016/j.exppara.2013.09.010

Miguel-Blanco, C., Molina, I., Bardera, A. I., Díaz, B., de las Heras, L., Lozano, S., González, C., Rodrigues, J., Delves, M. J., Ruecker, A., Colmenarejo, G., Viera, S., Martínez-Martínez, M. S., Fernández, E., Baum, J., Sinden, R. E., & Herreros, E. (2017). Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nature Communications, 8(1), 15160. doi: 10.1038/ncomms15160

Pham The, H., González-Álvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T. M., & Cabrera-Pérez, M. Á. (2011). In Silico Prediction of Caco-2 Cell Permeability by a Classification QSAR Approach. Molecular Informatics, 30(4), 376–385. doi: 10.1002/minf.201000118

Pinto, N., & Eileen Dolan, M. (2011). Clinically Relevant Genetic Variations in Drug Metabolizing Enzymes. Current Drug Metabolism, 12(5), 487–497. doi: 10.2174/138920011795495321

Roberts, F., & Freshwater-Turner, D. (2007). Pharmacokinetics and anaesthesia. Continuing Education in Anaesthesia Critical Care & Pain, 7(1), 25–29. doi: 10.1093/bjaceaccp/mkl058

Sabbatani, S., Manfredi, R., & Fiorino, S. (2010). Malaria infection and the anthropological evolution. Saúde e Sociedade, 19(1), 64–83. doi: 10.1590/S0104-12902010000100006

Sanguinetti, M. C., & Mitcheson, J. S. (2005). Predicting drug–hERG channel interactions that cause acquired long QT syndrome. Trends in Pharmacological Sciences, 26(3), 119–124. doi: 10.1016/j.tips.2005.01.003

Santos, B. M., Dias, B. K. M., Nakabashi, M., & Garcia, C. R. S. (2021). The Knockout for G Protein-Coupled Receptor-Like PfSR25 Increases the Susceptibility of Malaria Parasites to the Antimalarials Lumefantrine and Piperaquine but Not to Medicine for Malaria Venture Compounds. Frontiers in Microbiology, 12. doi: 10.3389/fmicb.2021.638869

Silva, M. A. da, Da Silva, F. B. ., Passarini, G. M. ., Fialho, S. N. ., Dos Santos, A. P. D. A. ., Martinez, L. D. N., Teles, C. B. G., & Kuehn, C. C. (2019). No Title. South American Journal of Basic Education, Technical and Technological, 6(2), 818–858.

Silva, M. A., Veloso, M. P., de Souza Reis, K., de Matos Passarini, G., dos Santos, A. P. de A., do Nascimento Martinez, L., Fokoue, H. H., Kato, M. J., Teles, C. B. G., & Kuehn, C. C. (2020). In silico evaluation and in vitro growth inhibition of Plasmodium falciparum by natural amides and synthetic analogs. Parasitology Research, 119(6), 1879–1887. doi: 10.1007/s00436-020-06681-9

Suh, J. I. (2020). Drug-induced liver injury. Yeungnam University Journal of Medicine, 37(1), 2–12. doi: 10.12701/yujm.2019.00297

Sun, H., Huang, R., Xia, M., Shahane, S., Southall, N., & Wang, Y. (2017). Prediction of hERG Liability - Using SVM Classification, Bootstrapping and Jackknifing. Molecular Informatics, 36(4), 1600126. doi: 10.1002/minf.201600126

Trager, W., & Jensen, J. B. (1976). Human Malaria Parasites in Continuous Culture. Science, 193(4254), 673–675. doi: 10.1126/science.781840

Tran, T. M., & Crompton, P. D. (2020). Decoding the complexities of human malaria through systems immunology. Immunological Reviews, 293(1), 144–162. doi: 10.1111/imr.12817

Vandenberg, J. I., Perry, M. D., Perrin, M. J., Mann, S. A., Ke, Y., & Hill, A. P. (2012). hERG K + Channels: Structure, Function, and Clinical Significance. Physiological Reviews, 92(3), 1393–1478. doi: 10.1152/physrev.00036.2011

Villoutreix, B. O., & Taboureau, O. (2015). Computational investigations of hERG channel blockers: New insights and current predictive models. Advanced Drug Delivery Reviews, 86, 72–82. doi: 10.1016/j.addr.2015.03.003

Vuignier, K., Schappler, J., Veuthey, J.-L., Carrupt, P.-A., & Martel, S. (2010). Drug–protein binding: a critical review of analytical tools. Analytical and Bioanalytical Chemistry, 398(1), 53–66. doi: 10.1007/s00216-010-3737-1

Wicht, K. J., Mok, S., & Fidock, D. A. (2020). Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annual Review of Microbiology, 74(1), 431–454. doi: 10.1146/annurev-micro-020518-115546

Witchel, H. J. (2007). The hERG potassium channel as a therapeutic target. Expert Opinion on Therapeutic Targets, 11(3), 321–336. doi: 10.1517/14728222.11.3.321

World Health Organization – WHO. (2021). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., & Lai, L. (2015). Deep Learning for Drug-Induced Liver Injury. Journal of Chemical Information and Modeling, 55(10), 2085–2093. doi: 10.1021/acs.jcim.5b00238

Yee, S. (1997). In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-Factor or myth. Pharmaceutical Research, 14(6), 4.

Publicado

31/07/2022

Cómo citar

SILVA, M. A. da .; MARTINEZ, L. do N. .; ALMEIDA, M. L. .; FERREIRA, A. dos S. .; FIALHO, S. N. .; FOKOUE, H. H. .; KATO, M. J. .; ARAÚJO, M. da S. .; TELES, C. B. G. . Detección in vitro e in silico de amidas frente a formas sexuales de Plasmodium falciparum. Research, Society and Development, [S. l.], v. 11, n. 10, p. e281111032756, 2022. DOI: 10.33448/rsd-v11i10.32756. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32756. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas