Comparación entre los efectos de la manotermosonicación y las técnicas ultrasónicas aisladas en la inactivación microbiana de un efluente de lavandería hospitalaria

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.32792

Palabras clave:

Vibraciones ultrasónicas; Lavandería hospitalaria; Inactivación microbiana; DCCR; Tecnología verde.

Resumen

La inactivación microbiana usando solo vibraciones de Ultrasonido (US) presenta ventajas considerables al aplicar técnicas verdes con no generación de gases de efecto invernadero, eliminación de químicos y condiciones de operación cercanas a las ambientales. Sin embargo, los sistemas de tratamiento de efluentes industriales han sido investigados como un paso de inactivación microbiana, usando US aislados asociados con técnicas de inactivación microbiana térmica (T) y manométrica (P). Para el presente estudio se construyó un prototipo de banco de acero inoxidable, operando en modo continuo, con cámara de ensayo de 2,5 L de volumen. El microorganismo indicador detectado en el efluente de una lavandería hospitalaria ubicada en la región de Agreste, estado de Pernambuco, Brasil, fue la bacteria E. coli. Además del efecto US aislado, se obtuvieron combinaciones US/T, US/P y US/T/P utilizando un diseño compuesto central (DCC). Los factores utilizados para el DCC fueron frecuencia, tiempo de detención hidráulica, temperatura y presión. Los resultados mostraron que la tasa de letalidad aumentó con la frecuencia y el tiempo de detención hidráulica pero se redujo al aumentar la temperatura de 30°C a 50°C y aumentar la presión entre 1,0 bar y 1,8 bar. Las vibraciones ultrasónicas aisladas, a 120 kHz y con TRH de 10 minutos, alcanzaron una eficiencia de inactivación del 98%. Tal valor se encontró usando la condición termomanosónica alrededor de 40 min. El uso de la técnica de vibración aislada de EE. UU. resultó ventajoso, principalmente debido a los resultados de inactivación eficientes y las reducciones químicas y de energía potencial.

Biografía del autor/a

Gleice Paula de Araújo , Catholic University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Leonardo Bandeira dos Santos, Advanced Institute of Technology and Innovation

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil

Leonildo Pereira Pedrosa Junior, Catholic University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Benjamim Francisco da Costa Neto, TermoCabo SA

TermoCabo SA, Av. Refibras 146, Industrial District, Cabo de Santo Agostinho 54505-000, Brazil; costa@brasympe.com.br

Leonie Asfora Sarubbo, Catholic University of Pernambuco, Northeast Biotechnology Network, Federal Rural University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Rua Manoel de Medeiros, s/n, Dois Irmãos, Zip Code: 52171-900, Recife – Pernambuco, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Mohand Benachour , Federal University of Pernambuco and Advanced Institute of Technology and Innovation

Department of Chemical Engineering, Federal University of Pernambuco, Av. dos Economistas, s/n, Zip Code: 50740-590, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Valdemir Alexandre dos Santos, Catholic University of Pernambuco, Northeast Biotechnology Network, Federal Rural University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Rua Manoel de Medeiros, s/n, Dois Irmãos, Zip Code: 52171-900, Recife – Pernambuco, Brazil.

 Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Citas

Al-Baali, M., & Khalfan, H. (2007). An Overview of Some Practical Quasi-Newton Methods for Unconstrained Optimization. Sultan Qaboos University. Journal for Science, 12(2), 199-209.

Astráin-Redín, L., Ciudad-Hidalgo, S., Raso, J., Condon, S., Cebrián, G., & Alvarez, I. (2020). Application of High-Power Ultrasound in the Food Industry. In Sonochemical Reactions, Selcan Karaku¸s, S., Ed.; IntechOpen: Rijeka, Croatia.

Buchanan, R. L. (1993). Predictive food microbiology. Trends Food Sci. Technol, 4, 6–11.

Cervantes-Elizarrará, A., Piloni-Martin, AJ., Ramírez-Moreno, E., Alanis-Garcia, E., Güemes-Vera, N., Gomez-Aldapa, C. A., Zafra-Rojas, Q. Y., & Cruz-Cansino, N. S. 2017. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371-379.

Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods, 11, 122.

Chen, Q., Zhao, Z., Wang, X., & CeShi, K. X. (2022). Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process. Innovative Food Science & Emerging Technologies, 75, 102912.

Fatyukhin, D. S., Nigmetzyanov, R. I., Prikhodko, V. M., Sukhov, A. V., & Sundukov, S. K., (2022). A Comparison of the Effects of Ultrasonic Cavitation on the Surfaces of 45 and 40Kh Steels. Metals, 12, 138.

Gil, M. M., Miller, F. A., Silva, T. R. S., & Silva, C. L. M. (2017). Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms' Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food and Bioprocess Technology, 10(12).

Hawrylik, E. (2019). Ultrasonic Disintegration of Bacteria Contained in Treated Wastewater. Journal of Ecological Engineering. 20(9), 171–176.

Hu, Y., Jiang, R., Li, X., Li, A., & Xie, Z. (2021). Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots. Metals 11, 1050.

Jankovic, A., Chaudhary, G., & Goia, F. (2021). Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems. Energy and Buildings. 250, 1-111298.

Guimarães, J. T., Scudino, H., Ramos, G. L. P. A., Oliveira, G. A. R., Margalho, L. P., Costa, L. E. O., Freitas, M. Q., Duarte, M. C. K. H., Sant'Ana, A. S., & Cruz, A. G. (2021). Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Current Opinion in Food Science, 42, 140-147.

Joyce, E., Al-Hashimi, A., & Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of Applied Microbiology, 110, 862–870.

Kahraman, O., Lee, H., Zhang, W., & Feng, H. (2017). Manothermosonication (MTS) treatment of apple-carrot juice blend for inactivation of Escherichia coli 0157:H7. Ultrason Sonochem. 38, 820-828.

Kentish, S. (2017). Engineering principles of ultrasound technology. In Ultrasound: Advances in Food Processing and Preservation; Bermúdez-Aguirre, D., Ed.; Academic Press: London, UK.

Kim, B. S., & Kim, J. Y. (2020). Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation. Microbiol. Biotechnol. Lett. 48(1), 48–56.

Li, Z., Dong, J., Wang, L., Zhang, Y., Zhuang, T., Wang, H., Cui, X., & Wang, Z. (2021). A power-triggered preparation strategy of nano-structured inorganics: Sonosynthesis. Nanoscale Adv. 3, 2423–2447.

Li, J., Ah, J., Liu, D., Chen, S., Y, X., & Ding, T. (2016). Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied Environmental Microbiology, 82, 1828-1837.

Lutterbeck, C., Colares, G., Dell'Osbel, N., & Silva, F. P. (2020). Hospital laundry wastewaters: A review on treatment alternatives, life cycle assessment and prognosis scenarios. Journal of Cleaner Production. 273 (7585), 12285.

Mcmeekin, T. A., & Ross, T. (2002). Predictive microbiology: providing a knowledge-based framework or change management. International Journal of Food Microbiology, 78, 133-153.

Naidji, B., Hallez, L., Et Taouil, A., Rebetez, M., & Hihn, J. Y. (2019). Influence of pressure on ultrasonic cavitation activity in room temperature ionic liquids: An electrochemical study. Ultrasonics Sonochemistry. 54, 129-134.

Onyeaka, H., Miri, T., Hart, A. Q., Anumudu, C., & Nwabor, O. F. (2021). Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International. 1-13.

Opare, W., Kang, C., Wei, X., Liu, H., & Wang, H. (2020). Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water. In.: Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology, 234(9), 1425-1435.

Panagou, E. Z., Skandamis, P. N., & Nychas, G.-J. E. (2003). Modeling the combined effect of temperature, pH and a w on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. J App. Microbiol, 94:146–156.

Perez, C. J. L. (2021). On the Application of a Design of Experiments along with an ANFIS and a Desirability Function to Model Response Variables. Symmetry, 13, 897.

Rosiak, E., Kajak-Siemaszko, K., Trząskowska, M., & Kołożyn-Krajewska, D. (2018). Predictive Microbiology of Food. Advancements of Microbiology, 57, (3), 229-243.

Sakhi, D., Abdellah Elmchaouri, A., Rakhila, Y., Abouri, M., Souabi, S., Hamdanic, M., & Jada, A. (2020). Optimization of the treatment of a real textile wastewater by coagulation-flocculation processes using central composite design. Desalination and Water Treatment, 195, 33-40.

Santos Junior, V., Nizoli, E., Galvan, D., Gomes, R. J., Biz, G., Ressutte, J. B., Rocha, T. S., & Spinosa, W. A. Micronutrient requirements and effects on cellular growth of acetic acid bacteria involved in vinegar production. Food Sci. Technol 2022, v42, e05121. https://doi.org/10.1590/fst.05121

Shabbir, M. A., Ahmed, H., Maan, A. A., Rehman, A., Afraz, M. T., Iqbal, M. W., Khan, I. M., Amir, R. M., Ashraf, W. Khan, M. R., & Aadil, R. M. (2021). Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Sci. Technol. 41(2), 279-294.

Silva, E. F. V. M. (2020). Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci. Technol, 105, 402–415.

Starek, A., Kobus, Z., Sagan, A., Chudzik, B., Pawłat, J., Kwiatkowski, M., Terebun, P., & Andrejko, D. (2021). Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 11, 1–12.

Stavropoulou, E., & Bezirtzoglou, E. (2019). Predictive Modeling of Microbial Behavior in Food. Foods, 8, 654.

Thi Hong Bui, A., Cozzolino, D., Zisu, B., & Chandrapala, J. (2020). Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products – a review. Journal of Dairy Research, 87 (4), 501-512.

Wang, Y., & Rwan, L. (2021). Application of Ultrasonic Atomization in a Combined Circulation System of Spray Evaporative Cooling and Air Cooling for Electric Machines. Processes, 9, 1773.

Whiting, R. C., & Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiology, 10, 175–177.

Yeo, S. H., Prasanth, N. A., & Tan, K. L. (2017). Effects of Ambient Pressure and Fluid Temperature in Ultrasonic Cavitation Erosion. In.: Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal. JF editors Silva Gomes and SA Megid. Publish INEGI/FEUP.

Yu, D., & Liu, B. (2020). Effect of ultrasound on the nucleation temperature of water with varied air contentes. Chemical Engineering Communications, 207:6, 769-774.

Zhao, J., Jiang, Z., Zhu, J., Zhang, J., & Li, Y. Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the Distilled Water. Metals, 10, 1631.

Descargas

Publicado

04/08/2022

Cómo citar

ANDRADE FILHO , M. P. de; SILVA, R. de C. F. S. da .; ARAÚJO , G. P. de .; SANTOS, L. B. dos .; PEDROSA JUNIOR, L. P. .; FRANCISCO DA COSTA NETO, B. .; ASFORA SARUBBO, L. . .; BENACHOUR , M. .; SANTOS, V. A. dos. Comparación entre los efectos de la manotermosonicación y las técnicas ultrasónicas aisladas en la inactivación microbiana de un efluente de lavandería hospitalaria . Research, Society and Development, [S. l.], v. 11, n. 10, p. e379111032792, 2022. DOI: 10.33448/rsd-v11i10.32792. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32792. Acesso em: 4 ene. 2025.

Número

Sección

Ingenierías