Comparación entre los efectos de la manotermosonicación y las técnicas ultrasónicas aisladas en la inactivación microbiana de un efluente de lavandería hospitalaria
DOI:
https://doi.org/10.33448/rsd-v11i10.32792Palabras clave:
Vibraciones ultrasónicas; Lavandería hospitalaria; Inactivación microbiana; DCCR; Tecnología verde.Resumen
La inactivación microbiana usando solo vibraciones de Ultrasonido (US) presenta ventajas considerables al aplicar técnicas verdes con no generación de gases de efecto invernadero, eliminación de químicos y condiciones de operación cercanas a las ambientales. Sin embargo, los sistemas de tratamiento de efluentes industriales han sido investigados como un paso de inactivación microbiana, usando US aislados asociados con técnicas de inactivación microbiana térmica (T) y manométrica (P). Para el presente estudio se construyó un prototipo de banco de acero inoxidable, operando en modo continuo, con cámara de ensayo de 2,5 L de volumen. El microorganismo indicador detectado en el efluente de una lavandería hospitalaria ubicada en la región de Agreste, estado de Pernambuco, Brasil, fue la bacteria E. coli. Además del efecto US aislado, se obtuvieron combinaciones US/T, US/P y US/T/P utilizando un diseño compuesto central (DCC). Los factores utilizados para el DCC fueron frecuencia, tiempo de detención hidráulica, temperatura y presión. Los resultados mostraron que la tasa de letalidad aumentó con la frecuencia y el tiempo de detención hidráulica pero se redujo al aumentar la temperatura de 30°C a 50°C y aumentar la presión entre 1,0 bar y 1,8 bar. Las vibraciones ultrasónicas aisladas, a 120 kHz y con TRH de 10 minutos, alcanzaron una eficiencia de inactivación del 98%. Tal valor se encontró usando la condición termomanosónica alrededor de 40 min. El uso de la técnica de vibración aislada de EE. UU. resultó ventajoso, principalmente debido a los resultados de inactivación eficientes y las reducciones químicas y de energía potencial.
Citas
Al-Baali, M., & Khalfan, H. (2007). An Overview of Some Practical Quasi-Newton Methods for Unconstrained Optimization. Sultan Qaboos University. Journal for Science, 12(2), 199-209.
Astráin-Redín, L., Ciudad-Hidalgo, S., Raso, J., Condon, S., Cebrián, G., & Alvarez, I. (2020). Application of High-Power Ultrasound in the Food Industry. In Sonochemical Reactions, Selcan Karaku¸s, S., Ed.; IntechOpen: Rijeka, Croatia.
Buchanan, R. L. (1993). Predictive food microbiology. Trends Food Sci. Technol, 4, 6–11.
Cervantes-Elizarrará, A., Piloni-Martin, AJ., Ramírez-Moreno, E., Alanis-Garcia, E., Güemes-Vera, N., Gomez-Aldapa, C. A., Zafra-Rojas, Q. Y., & Cruz-Cansino, N. S. 2017. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371-379.
Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods, 11, 122.
Chen, Q., Zhao, Z., Wang, X., & CeShi, K. X. (2022). Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process. Innovative Food Science & Emerging Technologies, 75, 102912.
Fatyukhin, D. S., Nigmetzyanov, R. I., Prikhodko, V. M., Sukhov, A. V., & Sundukov, S. K., (2022). A Comparison of the Effects of Ultrasonic Cavitation on the Surfaces of 45 and 40Kh Steels. Metals, 12, 138.
Gil, M. M., Miller, F. A., Silva, T. R. S., & Silva, C. L. M. (2017). Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms' Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food and Bioprocess Technology, 10(12).
Hawrylik, E. (2019). Ultrasonic Disintegration of Bacteria Contained in Treated Wastewater. Journal of Ecological Engineering. 20(9), 171–176.
Hu, Y., Jiang, R., Li, X., Li, A., & Xie, Z. (2021). Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots. Metals 11, 1050.
Jankovic, A., Chaudhary, G., & Goia, F. (2021). Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems. Energy and Buildings. 250, 1-111298.
Guimarães, J. T., Scudino, H., Ramos, G. L. P. A., Oliveira, G. A. R., Margalho, L. P., Costa, L. E. O., Freitas, M. Q., Duarte, M. C. K. H., Sant'Ana, A. S., & Cruz, A. G. (2021). Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Current Opinion in Food Science, 42, 140-147.
Joyce, E., Al-Hashimi, A., & Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of Applied Microbiology, 110, 862–870.
Kahraman, O., Lee, H., Zhang, W., & Feng, H. (2017). Manothermosonication (MTS) treatment of apple-carrot juice blend for inactivation of Escherichia coli 0157:H7. Ultrason Sonochem. 38, 820-828.
Kentish, S. (2017). Engineering principles of ultrasound technology. In Ultrasound: Advances in Food Processing and Preservation; Bermúdez-Aguirre, D., Ed.; Academic Press: London, UK.
Kim, B. S., & Kim, J. Y. (2020). Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation. Microbiol. Biotechnol. Lett. 48(1), 48–56.
Li, Z., Dong, J., Wang, L., Zhang, Y., Zhuang, T., Wang, H., Cui, X., & Wang, Z. (2021). A power-triggered preparation strategy of nano-structured inorganics: Sonosynthesis. Nanoscale Adv. 3, 2423–2447.
Li, J., Ah, J., Liu, D., Chen, S., Y, X., & Ding, T. (2016). Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied Environmental Microbiology, 82, 1828-1837.
Lutterbeck, C., Colares, G., Dell'Osbel, N., & Silva, F. P. (2020). Hospital laundry wastewaters: A review on treatment alternatives, life cycle assessment and prognosis scenarios. Journal of Cleaner Production. 273 (7585), 12285.
Mcmeekin, T. A., & Ross, T. (2002). Predictive microbiology: providing a knowledge-based framework or change management. International Journal of Food Microbiology, 78, 133-153.
Naidji, B., Hallez, L., Et Taouil, A., Rebetez, M., & Hihn, J. Y. (2019). Influence of pressure on ultrasonic cavitation activity in room temperature ionic liquids: An electrochemical study. Ultrasonics Sonochemistry. 54, 129-134.
Onyeaka, H., Miri, T., Hart, A. Q., Anumudu, C., & Nwabor, O. F. (2021). Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International. 1-13.
Opare, W., Kang, C., Wei, X., Liu, H., & Wang, H. (2020). Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water. In.: Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology, 234(9), 1425-1435.
Panagou, E. Z., Skandamis, P. N., & Nychas, G.-J. E. (2003). Modeling the combined effect of temperature, pH and a w on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. J App. Microbiol, 94:146–156.
Perez, C. J. L. (2021). On the Application of a Design of Experiments along with an ANFIS and a Desirability Function to Model Response Variables. Symmetry, 13, 897.
Rosiak, E., Kajak-Siemaszko, K., Trząskowska, M., & Kołożyn-Krajewska, D. (2018). Predictive Microbiology of Food. Advancements of Microbiology, 57, (3), 229-243.
Sakhi, D., Abdellah Elmchaouri, A., Rakhila, Y., Abouri, M., Souabi, S., Hamdanic, M., & Jada, A. (2020). Optimization of the treatment of a real textile wastewater by coagulation-flocculation processes using central composite design. Desalination and Water Treatment, 195, 33-40.
Santos Junior, V., Nizoli, E., Galvan, D., Gomes, R. J., Biz, G., Ressutte, J. B., Rocha, T. S., & Spinosa, W. A. Micronutrient requirements and effects on cellular growth of acetic acid bacteria involved in vinegar production. Food Sci. Technol 2022, v42, e05121. https://doi.org/10.1590/fst.05121
Shabbir, M. A., Ahmed, H., Maan, A. A., Rehman, A., Afraz, M. T., Iqbal, M. W., Khan, I. M., Amir, R. M., Ashraf, W. Khan, M. R., & Aadil, R. M. (2021). Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Sci. Technol. 41(2), 279-294.
Silva, E. F. V. M. (2020). Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci. Technol, 105, 402–415.
Starek, A., Kobus, Z., Sagan, A., Chudzik, B., Pawłat, J., Kwiatkowski, M., Terebun, P., & Andrejko, D. (2021). Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 11, 1–12.
Stavropoulou, E., & Bezirtzoglou, E. (2019). Predictive Modeling of Microbial Behavior in Food. Foods, 8, 654.
Thi Hong Bui, A., Cozzolino, D., Zisu, B., & Chandrapala, J. (2020). Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products – a review. Journal of Dairy Research, 87 (4), 501-512.
Wang, Y., & Rwan, L. (2021). Application of Ultrasonic Atomization in a Combined Circulation System of Spray Evaporative Cooling and Air Cooling for Electric Machines. Processes, 9, 1773.
Whiting, R. C., & Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiology, 10, 175–177.
Yeo, S. H., Prasanth, N. A., & Tan, K. L. (2017). Effects of Ambient Pressure and Fluid Temperature in Ultrasonic Cavitation Erosion. In.: Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal. JF editors Silva Gomes and SA Megid. Publish INEGI/FEUP.
Yu, D., & Liu, B. (2020). Effect of ultrasound on the nucleation temperature of water with varied air contentes. Chemical Engineering Communications, 207:6, 769-774.
Zhao, J., Jiang, Z., Zhu, J., Zhang, J., & Li, Y. Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the Distilled Water. Metals, 10, 1631.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Manoel Pereira de Andrade Filho ; Rita de Cássia Freire Soares da Silva; Gleice Paula de Araújo ; Leonardo Bandeira dos Santos; Leonildo Pereira Pedrosa Junior; Benjamim Francisco da Costa Neto; Leonie Asfora Sarubbo; Mohand Benachour ; Valdemir Alexandre dos Santos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.