Comparação entre os efeitos da manotermossonicação e das técnicas ultrassônicas isoladas na inativação microbiana de um efluente de lavanderia hospitalar

Autores

DOI:

https://doi.org/10.33448/rsd-v11i10.32792

Palavras-chave:

Vibrações ultrassônicas; Lavanderia hospitalar; Inativação microbiana; DCCR; Tecnologia verde.

Resumo

A inativação microbiana utilizando apenas vibrações de Ultrassom (US) apresenta vantagens consideráveis ao aplicar técnicas verdes com não geração de gases de efeito estufa, eliminação de produtos químicos e condições de operação próximas às condições ambientais. No entanto, sistemas de tratamento de efluentes industriais têm sido investigados como uma etapa de inativação microbiana, utilizando US isolados associados a técnicas de inativação microbiana térmica (T) e manométrica (P). Um protótipo de bancada de aço inoxidável foi construído para o presente estudo, operando em modo contínuo, com uma câmara de teste de 2,5 L de volume. O microrganismo indicador detectado no efluente de uma lavanderia hospitalar localizada no Agreste do estado de Pernambuco, Brasil, foi a bactéria E. coli. Além do efeito de US isolado, combinações de US/T, US/P e US/T/P foram obtidas usando um delineamento composto central (DCC). Os fatores utilizados para o DCC foram frequência, tempo de detenção hidráulica, temperatura e pressão. Os resultados mostraram que a taxa de letalidade aumentou com a frequência e o tempo de detenção hidráulica, mas foi reduzida ao aumentar a temperatura de 30°C para 50°C e aumentar a pressão entre 1,0 bar e 1,8 bar. Vibrações ultrassônicas isoladas, a 120 kHz e com TRH de 10 minutos, atingiram uma eficiência de inativação de 98%. Tal valor foi encontrado usando a condição termomanosônica em torno de 40 min. A utilização da técnica de vibração US isolada mostrou-se vantajosa, principalmente devido aos resultados de inativação eficientes e potenciais reduções energéticas e químicas.

Biografia do Autor

Gleice Paula de Araújo , Catholic University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Leonardo Bandeira dos Santos, Advanced Institute of Technology and Innovation

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil

Leonildo Pereira Pedrosa Junior, Catholic University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Benjamim Francisco da Costa Neto, TermoCabo SA

TermoCabo SA, Av. Refibras 146, Industrial District, Cabo de Santo Agostinho 54505-000, Brazil; costa@brasympe.com.br

Leonie Asfora Sarubbo, Catholic University of Pernambuco, Northeast Biotechnology Network, Federal Rural University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Rua Manoel de Medeiros, s/n, Dois Irmãos, Zip Code: 52171-900, Recife – Pernambuco, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Mohand Benachour , Federal University of Pernambuco and Advanced Institute of Technology and Innovation

Department of Chemical Engineering, Federal University of Pernambuco, Av. dos Economistas, s/n, Zip Code: 50740-590, Recife, Brazil.

Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Valdemir Alexandre dos Santos, Catholic University of Pernambuco, Northeast Biotechnology Network, Federal Rural University of Pernambuco and Advanced Institute of Technology and Innovation

Postgraduate Program in Environmental Process Development, Catholic University of Pernambuco, Rua do Príncipe, 526, Zip Code: 50050-900, Recife, Brazil.

Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Rua Manoel de Medeiros, s/n, Dois Irmãos, Zip Code: 52171-900, Recife – Pernambuco, Brazil.

 Advanced Institute of Technology and Innovation (IATI), Rua Joaquim de Brito, 216, Boa Vista, Zip Code: 50070-280, Recife – Pernambuco, Brazil.

Referências

Al-Baali, M., & Khalfan, H. (2007). An Overview of Some Practical Quasi-Newton Methods for Unconstrained Optimization. Sultan Qaboos University. Journal for Science, 12(2), 199-209.

Astráin-Redín, L., Ciudad-Hidalgo, S., Raso, J., Condon, S., Cebrián, G., & Alvarez, I. (2020). Application of High-Power Ultrasound in the Food Industry. In Sonochemical Reactions, Selcan Karaku¸s, S., Ed.; IntechOpen: Rijeka, Croatia.

Buchanan, R. L. (1993). Predictive food microbiology. Trends Food Sci. Technol, 4, 6–11.

Cervantes-Elizarrará, A., Piloni-Martin, AJ., Ramírez-Moreno, E., Alanis-Garcia, E., Güemes-Vera, N., Gomez-Aldapa, C. A., Zafra-Rojas, Q. Y., & Cruz-Cansino, N. S. 2017. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371-379.

Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods, 11, 122.

Chen, Q., Zhao, Z., Wang, X., & CeShi, K. X. (2022). Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process. Innovative Food Science & Emerging Technologies, 75, 102912.

Fatyukhin, D. S., Nigmetzyanov, R. I., Prikhodko, V. M., Sukhov, A. V., & Sundukov, S. K., (2022). A Comparison of the Effects of Ultrasonic Cavitation on the Surfaces of 45 and 40Kh Steels. Metals, 12, 138.

Gil, M. M., Miller, F. A., Silva, T. R. S., & Silva, C. L. M. (2017). Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms' Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food and Bioprocess Technology, 10(12).

Hawrylik, E. (2019). Ultrasonic Disintegration of Bacteria Contained in Treated Wastewater. Journal of Ecological Engineering. 20(9), 171–176.

Hu, Y., Jiang, R., Li, X., Li, A., & Xie, Z. (2021). Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots. Metals 11, 1050.

Jankovic, A., Chaudhary, G., & Goia, F. (2021). Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems. Energy and Buildings. 250, 1-111298.

Guimarães, J. T., Scudino, H., Ramos, G. L. P. A., Oliveira, G. A. R., Margalho, L. P., Costa, L. E. O., Freitas, M. Q., Duarte, M. C. K. H., Sant'Ana, A. S., & Cruz, A. G. (2021). Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Current Opinion in Food Science, 42, 140-147.

Joyce, E., Al-Hashimi, A., & Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of Applied Microbiology, 110, 862–870.

Kahraman, O., Lee, H., Zhang, W., & Feng, H. (2017). Manothermosonication (MTS) treatment of apple-carrot juice blend for inactivation of Escherichia coli 0157:H7. Ultrason Sonochem. 38, 820-828.

Kentish, S. (2017). Engineering principles of ultrasound technology. In Ultrasound: Advances in Food Processing and Preservation; Bermúdez-Aguirre, D., Ed.; Academic Press: London, UK.

Kim, B. S., & Kim, J. Y. (2020). Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation. Microbiol. Biotechnol. Lett. 48(1), 48–56.

Li, Z., Dong, J., Wang, L., Zhang, Y., Zhuang, T., Wang, H., Cui, X., & Wang, Z. (2021). A power-triggered preparation strategy of nano-structured inorganics: Sonosynthesis. Nanoscale Adv. 3, 2423–2447.

Li, J., Ah, J., Liu, D., Chen, S., Y, X., & Ding, T. (2016). Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied Environmental Microbiology, 82, 1828-1837.

Lutterbeck, C., Colares, G., Dell'Osbel, N., & Silva, F. P. (2020). Hospital laundry wastewaters: A review on treatment alternatives, life cycle assessment and prognosis scenarios. Journal of Cleaner Production. 273 (7585), 12285.

Mcmeekin, T. A., & Ross, T. (2002). Predictive microbiology: providing a knowledge-based framework or change management. International Journal of Food Microbiology, 78, 133-153.

Naidji, B., Hallez, L., Et Taouil, A., Rebetez, M., & Hihn, J. Y. (2019). Influence of pressure on ultrasonic cavitation activity in room temperature ionic liquids: An electrochemical study. Ultrasonics Sonochemistry. 54, 129-134.

Onyeaka, H., Miri, T., Hart, A. Q., Anumudu, C., & Nwabor, O. F. (2021). Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. Food Reviews International. 1-13.

Opare, W., Kang, C., Wei, X., Liu, H., & Wang, H. (2020). Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water. In.: Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology, 234(9), 1425-1435.

Panagou, E. Z., Skandamis, P. N., & Nychas, G.-J. E. (2003). Modeling the combined effect of temperature, pH and a w on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. J App. Microbiol, 94:146–156.

Perez, C. J. L. (2021). On the Application of a Design of Experiments along with an ANFIS and a Desirability Function to Model Response Variables. Symmetry, 13, 897.

Rosiak, E., Kajak-Siemaszko, K., Trząskowska, M., & Kołożyn-Krajewska, D. (2018). Predictive Microbiology of Food. Advancements of Microbiology, 57, (3), 229-243.

Sakhi, D., Abdellah Elmchaouri, A., Rakhila, Y., Abouri, M., Souabi, S., Hamdanic, M., & Jada, A. (2020). Optimization of the treatment of a real textile wastewater by coagulation-flocculation processes using central composite design. Desalination and Water Treatment, 195, 33-40.

Santos Junior, V., Nizoli, E., Galvan, D., Gomes, R. J., Biz, G., Ressutte, J. B., Rocha, T. S., & Spinosa, W. A. Micronutrient requirements and effects on cellular growth of acetic acid bacteria involved in vinegar production. Food Sci. Technol 2022, v42, e05121. https://doi.org/10.1590/fst.05121

Shabbir, M. A., Ahmed, H., Maan, A. A., Rehman, A., Afraz, M. T., Iqbal, M. W., Khan, I. M., Amir, R. M., Ashraf, W. Khan, M. R., & Aadil, R. M. (2021). Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Sci. Technol. 41(2), 279-294.

Silva, E. F. V. M. (2020). Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci. Technol, 105, 402–415.

Starek, A., Kobus, Z., Sagan, A., Chudzik, B., Pawłat, J., Kwiatkowski, M., Terebun, P., & Andrejko, D. (2021). Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 11, 1–12.

Stavropoulou, E., & Bezirtzoglou, E. (2019). Predictive Modeling of Microbial Behavior in Food. Foods, 8, 654.

Thi Hong Bui, A., Cozzolino, D., Zisu, B., & Chandrapala, J. (2020). Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products – a review. Journal of Dairy Research, 87 (4), 501-512.

Wang, Y., & Rwan, L. (2021). Application of Ultrasonic Atomization in a Combined Circulation System of Spray Evaporative Cooling and Air Cooling for Electric Machines. Processes, 9, 1773.

Whiting, R. C., & Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiology, 10, 175–177.

Yeo, S. H., Prasanth, N. A., & Tan, K. L. (2017). Effects of Ambient Pressure and Fluid Temperature in Ultrasonic Cavitation Erosion. In.: Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal. JF editors Silva Gomes and SA Megid. Publish INEGI/FEUP.

Yu, D., & Liu, B. (2020). Effect of ultrasound on the nucleation temperature of water with varied air contentes. Chemical Engineering Communications, 207:6, 769-774.

Zhao, J., Jiang, Z., Zhu, J., Zhang, J., & Li, Y. Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the Distilled Water. Metals, 10, 1631.

Downloads

Publicado

04/08/2022

Como Citar

ANDRADE FILHO , M. P. de; SILVA, R. de C. F. S. da .; ARAÚJO , G. P. de .; SANTOS, L. B. dos .; PEDROSA JUNIOR, L. P. .; FRANCISCO DA COSTA NETO, B. .; ASFORA SARUBBO, L. . .; BENACHOUR , M. .; SANTOS, V. A. dos. Comparação entre os efeitos da manotermossonicação e das técnicas ultrassônicas isoladas na inativação microbiana de um efluente de lavanderia hospitalar . Research, Society and Development, [S. l.], v. 11, n. 10, p. e379111032792, 2022. DOI: 10.33448/rsd-v11i10.32792. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32792. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias