Efecto residual de los aceites esenciales Citrus sinensis y Syzygium aromaticum en asociación con temefos sobre larvas de Aedes aegypti Linn. (Diptera: Culicidae) en laboratorio
DOI:
https://doi.org/10.33448/rsd-v11i11.33489Palabras clave:
Larvicida; Formulación; Cerámica; Tasa de mortalidad; Dengue; Zika.Resumen
El aumento de Ae. aegypti resistencia a los insecticidas convencionales y la creciente preocupación pública por el impacto ambiental ha resultado en el desarrollo de alternativas para el control de mosquitos. Así, el uso de aceites esenciales (AE) en combinación con larvicidas puede ser una estrategia utilizada para reducir el fenómeno de la resistencia. El control de larvas con insecticidas durante un período prolongado es importante para interrumpir la transmisión de virus transmitidos por vectores, ya que las formulaciones larvicidas de larga duración reducen las visitas de los agentes de salud con la consiguiente reducción del costo global para el control de la propagación de mosquitos. Estudios previos han demostrado que las interacciones sinérgicas entre temephos y AE exhibieron una mayor letalidad de larvas en comparación con temephos solo. Por tanto, el objetivo de este trabajo fue evaluar los efectos residuales de asociaciones entre temefos y AE de Citrus sinensis y Syzygium aromaticum homogeneizados en hidrogel e impregnados en soportes cerámicos sobre larvas de Ae. aegypti. Luego de la aplicación de los productos en vasos de 1.000 mL, se depositaron 25 larvas en cada vaso y cada cinco días se vació la mitad de los cubiletes a 200 mL, se repuso el volumen original y se agregaron nuevos lotes de larvas. La mortalidad se observó después de 48 h de exposición larvaria. Hubo equivalencia en el efecto residual de la asociación temefos/AE cuando se comparó con temefos solo.
Citas
Adams, R. P. (2007). Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry (4th edition). Allured Pub Corp.
Adetoro, F. A., Anikwe, J. C., Makanjuola, W. A., Omotayo, A. I., & Awolola, S. T. (2022). Comparative Evaluation of Larvicides for Larval Source Management of Mosquitoes in Lagos, Nigeria. Egyptian Academic Journal of Biological Sciences. A, Entomology, 15(1), 33–46. https://doi.org/10.21608/eajbsa.2022.221971
Adhikari, K., Khanikor, B., & Sarma, R. (2022). Persistent susceptibility of Aedes aegypti to eugenol. Scientific Reports, 12(1), 2277. https://doi.org/10.1038/s41598-022-06302-8
Araujo, A. F. O., Ribeiro-Paes, J. T., Deus, J. T., Cavalcanti, S. C. H., Nunes, R. S., Alves, P. B., & Macoris, M. L. da G. (2016). Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Memórias Do Instituto Oswaldo Cruz, 111, 443–449. https://doi.org/10.1590/0074-02760160075
Clevenger, J. F. (1928). Apparatus for the determination of volatile oil. Journal of the American Pharmaceutical Association, 17(4), 345–349. https://doi.org/10.1002/jps.3080170407
Elliott, M., Janes, N. F., & Potter, C. (1978). The Future of Pyrethroids in Insect Control. Annual Review of Entomology, 23(1), 443–469. https://doi.org/10.1146/annurev.en.23.010178.002303
Ferhat, M. A., Meklati, B. Y., Smadja, J., & Chemat, F. (2006). An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. Journal of Chromatography A, 1112(1), 121–126. https://doi.org/10.1016/j.chroma.2005.12.030
Hendrichs, J., Pereira, R., & Vreysen, M. J. B. (Eds.). (2021). Area-Wide Integrated Pest Management: Development and Field Application. CRC Press. https://doi.org/10.1201/9781003169239
Junkum, A., Intirach, J., Chansang, A., Champakaew, D., Chaithong, U., Jitpakdi, A., Riyong, D., Somboon, P., & Pitasawat, B. (2021). Enhancement of Temephos and Deltamethrin Toxicity by Petroselinum crispum Oil and its Main Constituents Against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 58(3), 1298–1315. https://doi.org/10.1093/jme/tjab008
Lesmana, S. D., Maryanti, E., Susanty, E., Afandi, D., Harmas, W., Octaviani, D. N., Zulkarnain, I., Pratama, M. A. B., & Mislindawati, M. (2022). Organophosphate Resistance in Aedes aegypti: Study from Dengue Hemorrhagic Fever Endemic Subdistrict in Riau, Indonesia. Reports of Biochemistry & Molecular Biology, 10(4), 589–596. https://doi.org/10.52547/rbmb.10.4.589
Norris, E. J., Gross, A. D., Bartholomay, L. C., & Coats, J. R. (2019). Plant essential oils synergize various pyrethroid insecticides and antagonize malathion in Aedes aegypti. Medical and Veterinary Entomology, 33(4), 453–466. https://doi.org/10.1111/mve.12380
Palomino, M., Pinto, J., Yañez, P., Cornelio, A., Dias, L., Amorim, Q., Martins, A. J., Lenhart, A., & Lima, J. B. P. (2022). First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasites & Vectors, 15(1), 254. https://doi.org/10.1186/s13071-022-05310-x
Peng, S., Lin, J.-Y., Cheng, M.-H., Wu, C.-W., & Chu, I.-M. (2016). A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures. Materials Science and Engineering: C, 69, 421–428. https://doi.org/10.1016/j.msec.2016.06.091
Pontes, R. J. S., Dantas Filho, F. F., Alencar, C. H. M., Regazzi, A. C. F., Cavalcanti, L. P. G., Ramos Jr, A. N., & Lima, J. W. O. (2010). Impact of water renewal on the residual effect of larvicides in the control of Aedes aegypti. Memórias Do Instituto Oswaldo Cruz, 105(2), 220–224. https://doi.org/10.1590/S0074-02762010000200019
Santana, G. C., Mello, A. C. S., Valerio, M. E. G., & Macedo, Z. S. (2007). Scintillating properties of pure and doped BGO ceramics. Journal of Materials Science, 42(7), 2231–2235. https://doi.org/10.1007/s10853-006-1319-6
Santos, G. P. C. dos, Assis, C. R. D., Oliveira, V. M., Cahu, T. B., Silva, V. L., Santos, J. F., Yogui, G. T., & Bezerra, R. S. (2022). Acetylcholinesterase from the charru mussel Mytella charruana: Kinetic characterization, physicochemical properties and potential as in vitro biomarker in environmental monitoring of mollusk extraction areas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 252, 109225. https://doi.org/10.1016/j.cbpc.2021.109225
Santos, L., Brandão, L., Costa, A., Martins, R., Rodrigues, A., & Almeida, S. (2022). The Potentiality of Plant Species from the Lamiaceae Family for the Development of Herbal Medicine in the Control of Diseases Transmitted by Aedes aegypti. Pharmacognosy Reviews, 16(31), 40–44. https://doi.org/10.5530/phrev.2022.16.7
Schmolka, I., & Lundsted, I. (1986). The Synthesis and Properties of Block Copolymer Polyol Surfactants. Block and Graft Copolymerization. (1st ed.).
Selles, S. M. A., Kouidri, M., Belhamiti, B. T., & Ait Amrane, A. (2020). Chemical composition, in vitro antibacterial and antioxidant activities of Syzygium aromaticum essential oil. Journal of Food Measurement and Characterization, 1–7. https://doi.org/10.1007/s11694-020-00482-5
Şengül Demirak, M. Ş., & Canpolat, E. (2022). Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects, 13(2), 162. https://doi.org/10.3390/insects13020162
Sharma, N., & Tripathi, A. (2008). Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiological Research, 163(3), 337–344. https://doi.org/10.1016/j.micres.2006.06.009
WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. https://apps.who.int/iris/handle/10665/69101 (Accessed 27 Jul 2022)
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Thaysnara Batista Brito; Daiane Marques Pereira; Péricles Barreto Alves; Luana Marília Santos Oliveira; Loíde Oliveira Alves; Marcos Rafael Chagas Mendonça; Zelia Soares Macedo; Rogéria Souza Nunes; Sócrates Cabral de Holanda Cavalcanti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.