Formación de biopelículas, resistencia a múltiples fármacos e infecciones clínicas de Staphylococcus haemolyticus: Una breve revisión
DOI:
https://doi.org/10.33448/rsd-v11i11.33605Palabras clave:
Staphylococcus haemolyticus; Multirresistencia; Biopelícula; Patogenicidad; Infección relacionada con dispositivos médicos.Resumen
Los estafilococos coagulasa negativos (ECN) se han asociado con una serie de problemas de salud humana, como infecciones relacionadas con dispositivos médicos, infecciones cutáneas localizadas o infecciones directas. Comprenden una parte importante de la microbiota humana normal y están asociados con enfermedades graves e intensivas, causan infecciones en humanos, especialmente en pacientes inmunocomprometidos y neonatos. S.haemolyticus es, después de Staphylococcus epidermidis, la segunda especie más frecuentemente aislada de casos clínicos, principalmente en infecciones de la sangre, incluida la sepsis. Su factor de virulencia más importante puede ser la capacidad de adquirir resistencia a múltiples fármacos contra los agentes antimicrobianos disponibles, incluso los glicopéptidos. Está muy extendido en los hospitales y entre el personal médico, por lo que es un microbio emergente que causa infecciones nosocomiales. Esta revisión analiza los aspectos asociados con las infecciones del torrente sanguíneo por S. haemolyticus, los factores de virulencia y la capacidad de formar biopelículas en las superficies de los dispositivos médicos. Debido a su gran adaptabilidad y supervivencia en el medio hospitalario, especialmente en dispositivos médicos, S. haemolyticus se convierte en un factor crucial en las infecciones nosocomiales causadas por cepas multirresistentes.
Citas
Ahmed, A., et al. (2019). Catheter related recurrent bloodstream infection caused by linezolid-resistant, methicillin resistant Staphylococcus haemolyticus; an emerging super bug. J Pak Med Assoc; 69(2):261–263.
Al-TamimiM., Abu-RaidehJ., Himsawi N., Khasawneh A., Hawamdeh H. (2020). Methicillin and vancomycin resistance in coagulase-negative Staphylococci isolated from the nostrils of hospitalized patients. J Infect Dev Ctries; 14:28-35.
Argemi, X., et al. (2019). Coagulase-Negative Staphylococci Pathogenomics. Int J Mol Sci; 20(5):1215.
Aronson, J.K., Heneghan, C., Ferner, R.E. (2020). Medical Devices: Definition, Classification, and Regulatory Implications. Drug Saf; 43(2):83-93.
Asaad, A.M., Ansar, Q.M., Mujeeb, H.S. (2016). Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect Dis (Lond);48(5):356-60.
Asante J., et al. (2020). Review of Clinically and Epidemiologically Relevant Coagulase-Negative Staphylococci in Africa. Microbial Drug Resistance; 26(8):951-970.
Barros EM., Ceotto H., Bastos MC., Santos KR., Giambiagi-Demarval M. (2012). Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol; 50, 166–168.
Bakthavatchalam, Y.D., et al. (2017). Methicillin-Susceptible Teicoplanin-Resistant Staphylococcus haemolyticus Isolate from a Bloodstream Infection with Novel Mutations in the tcaRAB Teicoplanin Resistance Operon. Jpn J Infect Dis; 24;70(4):458-460.
Bakthavatchalam, Y.D., et al. (2021). Vancomycin heteroresistance in Staphylococcus haemolyticus: elusive phenotype. Future Sci OA; 9;7(7): FSO710.
Becker, K., Heilmann, C., Peters, G. (2014). Coagulase-negative staphylococci. Clin Microbiol Rev; 27(4):870-926.
Bouchami, O., Achour, W., Hassen, A.B. (2011). Species distribution and antibiotic sensitivity pattern of coagulase-negative Staphylococci other than Staphylococcus epidermidis isolated from various clinical specimens. Afr. J. Microbiol; 5:1298–1305.
Cavanagh, J.P., et al. (2014). Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother; 69(11):2920–7.
Chandra, J., Kuhn, DM., Mukherjee, PK., Hoyer, LL., McCormick, T., Ghannoum, MA. (2001). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 183(18):5385-94.
Costerton, J., Montanaro, L., Arciola, C. (2005). Biofilm in implant infections: its production and regulation. Int J Artif Organs; 28:1062–1068.
Czekaj, T., Ciszewski, M., Szewczyk, E.M. (2015). Staphylococcus haemolyticus – an emerging threat in the twilight of the antibiotics age. Microbiology; 161(11):2061–2068.
Eltwisy, H.O., et al. (2020). Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence; 11(1):1142-1157.
Feßler, A.T., et al. (2017). Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes. Vet Microbiol; 200: 95-100.
Gupta, V., et al. (2020). Linezolid Resistance in Staphylococcus haemolyticus - Case Series and Review of Literature. Infect Disord Drug Targets; 20(5):713-717.
Heilmann, C., Ziebuhr, W., Becker, K. (2019). Are coagulase-negative staphylococci virulent? Clin Microbiol Infect; 25(9):1071-80.
Hessam, S., et al. (2016). Microbial Profile and Antimicrobial Susceptibility of Bacteria Found in Inflammatory Hidradenitis Suppurativa Lesions. Skin Pharmacol Physiol; 29(3):161-7.
Horasan, E.S., et al. (2011). Bloodstream infections and mortality-related factors in febrile neutropenic cancer patients. Med Sci Monit; 17:CR304-9.
Kim, H.J., Jang, S. (2017). Draft genome sequence of multidrug-resistant Staphylococcus haemolyticus IPK_TSA25 harbouring a Staphylococcus aureus plasmid, pS0385-1. J Glob Antimicrob Resist; 11:8-9.
Lamers, R.P., et al. (2012). Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol. Biol; 12:171.
Lee, E.Y., et al. (2017). What is hidradenitis suppurativa? Can Fam Physician; 63(2):114-120.
Manoharan A., Das T., Whiteley GS., Glasbey T., Kriel FH., Manos J. (2020). The effect of N-acetylcysteine in a combined antibiofilm treatment against antibiotic-resistant Staphylococcus aureus. J Antimicrob Chemother; 1;75(7):1787-1798.
Mores, C.R., et al. (2021). Investigation of Plasmids Among Clinical Staphylococcus aureus and Staphylococcus haemolyticus Isolates from Egypt. Front Microbiol; 12:659116.
Natsis, N.E., Cohen, P.R. (2018). Coagulase-Negative Staphylococcus Skin and Soft Tissue Infections. Am J Clin Dermatol; 19(5):671-677.
O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Londres. https://amrreview.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed 10 Feb 2021.
Pain, M., et al. (2019). Comparative Genomic Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and Pathogenicity. Front Microbiol; 10; 10:2096.
Pais-Correia, AM., Sachse, M., Guadagnini, S. et al. (2010). Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med ;16: 83–89.
Pereira, P.M., et al. (2014). Staphylococcus haemolyticus disseminated among neonates with bacteremia in a neonatal intensive care unit in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis; 78(1):85-92.
Pereira-Ribeiro, P.M., et al. (2019). Influence of antibiotics on biofilm formation by different clones of nosocomial Staphylococcus haemolyticus. Future Microbiol; 14:789-799.
Pereira-Ribeiro, P.M., et al. (2022). Biofilm-producing ability of Staphylococcus spp. multridrug-resistance isolated from hospitalized patients with osteomyelitis. IJSRM Human; 20(4):147-161.
Rodríguez-Aranda, A., et al. (2009). Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis; 63(4):398-402.
Rogers, K.L., Fey, P.D., Rupp, M.E. (2009). Coagulase-negative staphylococcal infections. Infect Dis Clin North Am; 23(1):73-98.
Savage, V.J., Chopra, I., O’Neill, A.J. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother; 57:1968–1970.
Schilcher, K., Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation and treatment strategies. Microbiol Mol Biol Rev; 12;84(3): e00026-19.
Silva, P.V., et al. (2013). The antimicrobial susceptibility, biofilm formation and genotypic profiles of Staphylococcus haemolyticus from bloodstream infections. Mem Inst Oswaldo Cruz; 108 (6):812–813.
Silva-Santana, G., et al. (2021). Staphylococcus aureus biofilms: an opportunistic pathogen with multidrug resistance. R Med Microbiol; 32(1):12-21.
Sued, B.P.R., et al. (2017). Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Mem Inst Oswaldo Cruz; 112(3):188-195.
Sued-Karam, B.R., Pereira-Ribeiro, P.M.A. (2022). Staphylococcus warneri: brief literature review. Braz J Health Review; 5(2):4423-4429.
Szabo, J. (2009). hVISA/VISA: diagnostic and therapeutic problems. Expert Rev Anti Infect Ther; 7(1), 1–3.
Takeuchi, F., et al. (2005). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol; 187(21):7292-308.
Tuchscherr, L., et al. (2010). Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis; 202:1031e40.
Vanderhaeghen, W., et al. (2014). Invited review: effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci; 97:5275–5293.
Veach, L.A., et al. (1990). Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J Clin Microbiol; 28(9):2064-8.
Yong, Y.Y., Dykes, G.A., Choo, W.S. (2019). Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol; 45(2):201-222.
Wolden, R., Pain, M., Karlsson, R. et al. Identification of surface proteins in a clinical Staphylococcus haemolyticus isolate by bacterial surface shaving. (2020). BMC Microbiol; 20:80.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Paula Marcele Afonso Pereira-Ribeiro; Guilherme Goulart Cabral-Oliveira; Julianna Giordano Botelho Olivella; Isabelle Christine de Moraes Motta; Felipe Caldas Ribeiro; Barbara Araújo Nogueira; Louisy Sanches dos Santos; Bruna Ribeiro Sued-Karam; Ana Luíza Mattos-Guaraldi
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.