Biosurfactantes microbianos y aplicaciones ambientales: una revisión narrativa
DOI:
https://doi.org/10.33448/rsd-v11i12.34123Palabras clave:
Biosurfactantes; Metales pesados; remediación; PetróleoResumen
Las industrias petroleras son consideradas como los principales recursos energéticos, pero a la vez como productoras de grandes cantidades de residuos de hidrocarburos que son desechados en el suelo y en el agua. La contaminación por petróleo y derivados, incluidos los metales pesados, normalmente se trata mediante metodologías físicas, químicas o biológicas. Así, los biosurfactantes emergen como una alternativa promisoria para la remoción de aceite y sus derivados debido a su naturaleza anfipática, con porciones hidrofílicas e hidrofóbicas que permiten que estas moléculas tengan la capacidad de reducir la tensión interfacial, dispersar partículas de aceite, tener alta actividad superficial, tener baja toxicidad y alta biodegradabilidad, siendo ecológicamente correcto, además de actuar en condiciones extremas de salinidad, pH y temperatura. El presente estudio es una revisión narrativa, que consiste en una extensa revisión bibliográfica. El objetivo de este trabajo es abordar el potencial de los biosurfactantes microbianos para ser aplicados en la biorremediación ambiental. Las búsquedas de los artículos utilizados para componer este estudio se realizaron en bases de datos científicas digitales, utilizando palabras clave como biosurfactantes, petróleo, petroderivados, biorremediación y metales pesados. Esta revisión brinda información sobre las propiedades de los biosurfactantes, los microorganismos productores, los factores nutricionales y la aplicación de los biosurfactantes como una alternativa favorable en la remoción de petróleo y derivados, derrames de petróleo, limpieza e oleoductos y metales pesados.
Citas
Al-Bahry, S. N. et al. (2013). Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. International Biodeterioration & Biodegradation, 81, 141–146. https://doi.org/10.1016/j.ibiod.2012.01.006
Alvarez, V. M et al. (2015). Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids and Surfaces B: Biointerfaces, 136, 14-21, https://doi.org/10.1016/j.colsurfb.2015.08.046
Almeida, D.G. et al. (2016). Biosurfactants: promising molecules for petroleum biotechnology advances. Frontiers in microbiology, 7,1718.
Almeida, F. C. G. et al. (2015). Optimization and evaluation of biosurfactant produced by Pantoea sp. using pineapple peel residue, vegetable fat and corn steep liquor. J. Chem. Chem. Eng, 9(2015), 269-279.
Ahmad, Z. et al. (2018). Biosurfactants for Sustainable Soil Management. In Donald Sparks (Ed.), Advances in Agronomy (150 v., pp. 81- 130). Academic Press. https://doi.org/10.1016/bs.agron.2018.02.002
Akbari, S. et al. (2018). Biosurfactants - a new frontier for social and environmental safety: a mini review. Biotechnology Research and Innovation, 2(1), 81-90. https://doi.org/10.1016/j.biori.2018.09.001
Banat, I. M.; Samarah, N.; Murad, M.; Horne, R.; Banerjee, S.; World J.Microbiol. Biotechnol. 2013, 7, 80.
Bezerra, K. G. O. et al. (2018). Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology progress, 34(6), 1482-1493. https://doi.org/10.33448/rsd-v11i5.27453
Câmara, J. M. D. R. (2019). Estudo cinético da produção de ramnolipídeo pela Pseudomonas aeruginosa e sua aplicação na recuperação avançada de petróleo. 2019. 143f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal. Disponível em: https://repositorio.ufrn.br/handle/123456789/27939
Campos, J. M. et al. (2015). Formulation of mayonnaise with the addition of a bioemulsifier isolated from Candida utilis. Toxicology reports, 2, 1164-1170.
Chaprão, M. J. et al. (2015). Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electronic Journal of Biotechnology, 18(6), 471-479. https://doi.org/10.1016/j.ejbt.2015.09.005
Chaprão, M. J. et al. (2018). Formulation and application of a biosurfactant from Bacillus methylotrophicus as collector in the flotation of oily water in industrial environment. Journal of biotechnology, 285, 15-22. https://doi.org/10.1016/j.jbiotec.2018.08.016
Das, M. D. et al. (2018). Application of biosurfactant produced by an adaptive strain of C. tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated sand and water. Journal of Petroleum Science and Engineering, 170, 40-48. https://doi.org/10.1016/j.petrol.2018.06.034
Dell'Anno, F. et al. (2018). Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Marine environmental research, 137, 196-205. https://doi.org/10.1016/j.marenvres.2018.03.010
Gaur, V. K. et al. (2019). Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresource Technology, 285, 121314. https://doi.org/10.1016/j.biortech.2019.121314
Gudina, E. J., Pereira, J. F. B., Costa, R., Coutinho, J. A., Teixeira, J. A., & Rodrigues, L. R. (2013). Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials, 261, 106–113. https://doi.org/10.1016/j.jhazmat.2013.06.071
Haq, Z. U. l. et al. (2017). Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte. Journal of Materials, 8(3), 1029-1038.
Held, P. (2014). Rapid critical micelle concentration (CMC) determination using fluorescence polarization. BioTek Application Note.
Hentati, D., Chebbi, A., Mahmoud, A., & Hadrich F. et al. (2021). Biodegradation of hydrocarbons and biosurfactants production by a newly halotolerant Pseudomonas sp. strain isolated from contaminated seawater, Biochemical Engineering Journal, 166.
Jacob, J. M. et al. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of environmental management, 217, 56-70. https://doi.org/10.1016/j.jenvman.2018.03.077
Jadhav, V. V. et al. (2013). Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from Antarctic sea water. Desalination, 318, 64– 71. https://doi.org/10.1016/j.desal.2013.03.017
Joy, S., Rahman, P. K., & Sharma, S. (2017). Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chemical Engineering Journal, 317, 232-241. https://doi.org/10.1016/j.cej.2017.02.054
Karlapudi, A. P. et al. (2018b). Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an
Acinetobacter M6 strain. Journal of King Saud University-Science, 32(1), 223-227. https://doi.org/10.1016/j.jksus.2018.04.007
Khademolhosseini, R. et al. (2019). Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Advances, 9(14), 7932–7947. https://doi.org/10.1039/C8RA10087J
Lima, R. A. et al. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African Journal of Microbiology Research, 11(6), 237-244. https://doi.org/10.5897/AJMR2016.8341
Luna, J. M. et al. (2015). Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 413-418. https://doi.org/10.1016/j.colsurfa.2014.12.014
Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102, 558-566. https://doi.org/10.1016/j.psep.2016.05.010
Mao, X. et al. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of hazardous materials, 285, 419-435. https://doi.org/10.1016/j.jhazmat.2014.12.009
Melo Santos, S. F. et al. (2018). Avaliação da produção de biossurfactante a partir de diferentes fontes de carbono por Candida guilliermondii. Revista Saúde & Ciência Online, 7(2), 413-425. https://doi.org/10.35572/rsc.v7i2.126
Mnif, I., & Ghribi, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture, 96(13), 4310-4320. https://doi.org/10.1002/jsfa.7759
Mouafi, M.M., Abo Elsoud, M.M., Moharam, M.E. (2016). Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnology Reports, 9, 31–37, https://doi.org/10.1016/j.btre.2015.12.003
Olasanmi, I., & Thring, R. (2018). The Role of Biosurfactants in the Continued Drive for Environmental Sustainability. Sustainability, 10(12), 4817. https://doi.org/10.3390/su10124817
Ostendorf, T. A. et al. (2019). Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater. Journal of biotechnology, 295, 71-79. https://doi.org/10.1016/j.jbiotec.2019.01.025
Perfumo, A., Banat, I. M., & Marchant, R. (2017). Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends in Biotechnology, 36(3), 277-289. https://doi.org/10.1016/j.tibtech.2017.10.016
Priji, P. et al. (2013). Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate. Yeast, 30(3), 103-110. https://doi.org/10.1002/yea.2944.
Rocha e Silva, N. M. P. et al. (2018). Natural Surfactants and Their Applications for Heavy Oil Removal in Industry. Separation & Purification Reviews, 48, 267-281. https://doi.org/10.1080/15422119.2018.1474477.
Rocha e Silva, N. M.P. et al. (2018) Natural Surfactants and Their Applications for Heavy Oil Removal in Industry. Separation & Purification Reviews, p. 1-15.
Rufino, R. D. et al. (2013). Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. Journal of Petroleum Science and Engineering, 109, 117–122. https://doi.org/10.1016/j.petrol.2013.08.014
Rufino, R. et al. (2014). Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17(1), 34-38. https://doi.org/10.1016/j.ejbt.2013.12.006
Samal, K., Das, C., & Mohanty, K. (2017). Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater. Journal of environmental management, 203, 8-16. https://doi.org/10.1016/j.jenvman.2017.07.073
Santos, D. K. F et al. (2017). Candida lipolytica UCP0988 biosurfactant: potential as a bioremediation agent and in formulating a commercial related product. Frontiers in microbiology, 8, 767. https://doi.org/10.3389/fmicb.2017.00767
Santos, D. K. F., Luna, J. M., & Rufino, R. D. et al. (2016). Biosurfactants: Multifunctional Biomolecules of the 21st Century. International Journal of Molecular Sciences, 17, 401-430. https://doi.org/10.3390/ijms17030401
Santos, D. K. F. et al. (2013). Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science and Engineering, 105, 43-50. https://doi.org/10.1016/j.petrol.2013.03.028
Santos, A. P. P; SILVA, M.D. S; COSTA, E.V.L. Biossurfactantes: uma alternativa para o mercado industrial. Fronteiras: Journal of Social, Technological and Environmental Science, v. 5, n. 1, p. 88-103, 2016.
Sarubbo, L. A. et al. (2015). Construção de um Protótipo Móvel para Aplicação de Biossurfactantes em Escala Piloto para Tratamento de Água do Mar Contaminada por Derramamento de Derivado de Petróleo.
Sarubbo, L.A. et al. (2015). Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31(8), 707-723. https://doi.org/10.1080/02757540.2015.1095293
Sarma, H., Bustamante, K. L. T., & Prasad, M. N. V. (2019). Biosurfactants for oil recovery from refinery sludge: Magnetic nanoparticles assisted purification. Industrial and Municipal Sludge, 107-132, https://doi.org/10.1016/B978-0-12-815907-1.00006-4
Silva, E. J. et al. (2018). Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation. Colloids and Surfaces B: Biointerfaces, 172, 127-135. https://doi.org/10.1016/j.colsurfb.2018.08.034
Silva, R. et al. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International journal of molecular sciences, 15(7), 12523-12542. https://doi.org/10.3390/ijms150712523
Silva, I. A. (2020). Sobremesa farinácea tipo cupcake utilizando biossurfactante como emulsificante. Dissertação (Mestrado em Biotecnologia)
– Universidade Federal de Pernambuco, Recife. Disponível em: https://repositorio.ufpe.br/handle/123456789/42289
Silva, I.G.S et al. (2020). Soil bioremediation: overview of technologies and trends. Energies, 13(18), 4664. https://doi.org/10.3390/en13184664
Singh, R., Glick, B.R., & Rathore, D. (2018). Biosurfactants as a Biological Tool to Increase Micronutrient Availability in Soil: A Review. Pedosphere, 28(2), 170-189. https://doi.org/10.1016/S1002-0160(18)60018-9
Sobrinho, H. B. et al. (2013). Biosurfactants: classification, properties and environmental applications. Recent Developments in Biotechnology, 11, 1-29.
Souza, E. C., Vessoni-Penna, T.C., & De Souza Oliveira, R.P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: an overview. International biodeterioration & biodegradation, 89, 88-94. https://doi.org/10.1016/j.ibiod.2014.01.007
Shami, R. B., Shojaei, V; & Khoshdast, H. (2019). Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. Journal of environmental management, 231, 1182-1192. https://doi.org/10.1016/j.jenvman.2018.03.126
Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource technology, 232, 389-397. https://doi.org/10.1016/j.biortech.2017.02.047
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Patrícia Suzanne da Silva Marinho; Renata Raianny da Silva; Juliana Moura de Luna
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.