Una revisión de los aceites esenciales y sus propiedades en el género Campomanesia (Myrtaceae) del Cerrado Brasileño
DOI:
https://doi.org/10.33448/rsd-v11i12.34243Palabras clave:
Aceite volátil; Guavira; Biodiversidad; Compuestos fitoquímicos; Productos naturales.Resumen
El género Campomanesia (Myrtaceae) comprende especies de interés económico y científico. Producen aceites esenciales (AE) extraídos de hojas, frutos, semillas, raíces y corteza. De las especies de Campomanesia, 14 están en el Cerrado brasileño, un grande dominio fitogeográfico brasileño y hotspot de la biodiversidad y especies endémicas. El objetivo fue comprender los AE del género Campomanesia del Cerrado brasileño, revisar las especies y los constituyentes bioactivos de estos aceites. Usamos Scopus, Web of Science, PubMed, Directory of Open Access Journal y Science Direct, con las palabras clave “aceite esencial” y “Campomanesia” combinadas con el nombre de las especies del Cerrado. En las 37 publicaciones resultantes, hay una variedad de AE potenciales descritos, la mayoría tenían actividades antimicrobianas y antioxidantes. C. adamantium y C. pubescens fueron más citadas y cinco especies en el género no se incluyeron en la búsqueda. Los compuestos con actividad biológica potencial incluyen monoterpenos como los principales constituyentes de los aceites de frutas volátiles, mientras que los sesquiterpenos son compuestos principales en las partes restantes. Los AE de Campomanesia proporcionan alternativas terapéuticas potencialmente interesantes y viables, además para la alimentación. El uso sostenible de la biodiversidad, combinado con la biotecnología, es la forma de desarrollar productos más naturales o compuestos que se combinen sinérgicamente con productos sintéticos, reduciendo las concentraciones necesarias para lograr el efecto deseado. En fin, con las especies de Campomanesia del Cerrado, la conservación de la biodiversidad puede ser aliada al uso sostenible y beneficiarse, de la mesa a la farmacia, en el futuro.
Citas
Ait-ouazzou, A., Cherrat, L., Espina, L., Lorán, S., Rota, C., & Pagán, R. (2011). The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov. Food Sci. Emerg. Technol. 12(3):320–329. https://doi.org/10.1016/j.ifset.2011.04.004
Akthar, M., Degaga, B., & Azam, T. (2014). Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Issues Biol. Sci. Pharm. Res. 2(1):1–7.
Alves, A.M., Alves, M.S.O., Fernandes, T. de O., Naves, R.V., & Naves, M.M.V. (2013). Caracterização física e química, fenólicos totais e atividade antioxidante da polpa e resíduo de gabiroba. Rev. Bras. Frutic. 35(3):837–844. https://doi.org/10.1590/S0100-29452013000300021
Alves, A.M., Dias, T., Hassimotto, N.M.A., & Naves, M.M.V. (2017). Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian savannah native fruits. Food Sci. Technol. 37(4):564–569. https://doi.org/10.1590/1678-457X.26716
Alves, C.C.F., Oliveira, J.D., Estevam, E.B.B., Xavier, M.N., Nicolella, H.D., Furtado, R.A., Tavares, D.C., & Miranda, M.L.D. (2020). Antiproliferative activity of essential oils from three plants of the Brazilian Cerrado: Campomanesia adamantium (Myrtaceae), Protium ovatum (Burseraceae) and Cardiopetalum calophyllum (Annonaceae). Braz. J. Biol. 80(2):290–294. https://doi.org/10.1590/1519-6984.192643
Andrade, M.A., Cardoso, M. das G., Batista, L.R., Mallet, A.C.T., & Machado, S.M.F. (2012). Essential oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: Composition, antioxidant and antibacterial activities. Rev. Ciência Agronômica 43(2):399–408. https://doi.org/10.1590/S1806-66902012000200025
Araújo, F.F. de, Neri-Numa, I.A., Paulo Farias, D. de, Cunha, G.R.M.C. da, & Pastore, G.M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res. Int. 121:57–72. https://doi.org/10.1016/j.foodres.2019.03.018
Ariyarathna, I.R., & Karunaratne, D.N. (2016). Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag. Shelf Life 10:79–86. http://dx.doi.org/10.1016/j.fpsl.2016.10.005
Armendáriz-Barragán, B., Zafar, N., Badri, W., Galindo-Rodríguez, S.A., Kabbaj, D., Fessi, H., & Elaissari, A. (2016). Plant extracts: from encapsulation to application. Expert Opin. Drug Deliv. 13(8):1165–1175. http://dx.doi.org/10.1080/17425247.2016.1182487
Asbahani, A. El, Miladi, K., Badri, W., Sala, M., Addi, E.H.A., Casabianca, H., Mousadik, A. El, Hartmann, D., Jilale, A., Renaud, F.N.R., & Elaissari, A. (2015). Essential oils: From extraction to encapsulation. Int. J. Pharm. 483(1–2):220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
Bento, R., Pagán, E., Berdejo, D., Carvalho, R.J. de, García-Embid, S., Maggi, F., Magnani, M., De Souza, E.L., García-Gonzalo, D., & Pagán, R. (2020). Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices. Int. J. Food Microbiol. 331:108786. https://doi.org/10.1016/j.ijfoodmicro.2020.108786
Breda, C.A., Sanjinez-Argandoña, E.J., & Correia, C.D.A.C. (2012). Shelf life of powdered Campomanesia adamantium pulp in controlled environments. Food Chem. 135(4):2960–2964. http://dx.doi.org/10.1016/j.foodchem.2012.07.029
Cardoso, C.A.L. (2021). Plantas do gênero Campomanesia: potencial medicinal e nutracêutico. UEMS, Dourados.
Cardoso, C.A.L., & Ré-Poppi, N. (2009). Identification of the Volatile Compounds of Flower Oil of Campomanesia pubescens (Myrtaceae). J. Essent. Oil Res. 21(5):433-434. DOI:10.1080/10412905.2009.9700210
Cardoso, C.A.L., Lima, A.S.V., Ré-Poppi, N., & Vieira, M.D.C. (2009). Fruit oil of Campomanesia xanthocarpa O. Berg and Campomanesia adamantium O. Berg. J. Essent. Oil Res. 21(6):481–483. https://doi.org/10.1080/10412905.2009.9700223
Cardoso, C.L., Kataoka, V.M.F., & Ré-Poppi, N. (2010a). Identifcation of the volatile compounds of flowers of Campomanesia sessilifora O. Berg and Campomanesia xanthocarpa O. Berg. J. Essent. Oil Res. 22(3):254–256. http://dx.doi.org/10.1080/10412905.2010.9700318
Cardoso, C.L., Kataoka, V.M.F., & Ré-Poppi, N. (2010b). Leaf oil of Campomanesia sessiliflora O. Berg. J. Essent. Oil Res. 22(4):303–304. https://doi.org/10.1080/10412905.2010.9700330
Casarin, S.T., Porto, A.R., Gabatz, R.I.B., Bonow, C.A., Ribeiro, J.P., Mota, M.S. Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10(5):e20104031. https://periodicos.ufpel.edu.br/ojs2/index.php/enfermagem/article/view/19924
Catelan, T.B.S., Santos Radai, J.A., Leitão, M.M., Branquinho, L.S., Vasconcelos, P.C. De P., Heredia-Vieira, S.C., Kassuya, C.A.L., & Cardoso, C.A.L. (2018). Evaluation of the toxicity and anti-inflammatory activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O. Berg. J. Ethnopharmacol. 226(June):132–142. https://doi.org/10.1016/j.jep.2018.08.015
Chang, R., De Morais, S.A.L., Nascimento, E.A. do, Cunha, L.C.S., Rocha, E. De O., De Aquino, F.J.T., De Souza, M.G.M., Cunha, W.R., & Martins, C.H.G. (2011). Essential oil composition and antioxidant and antimicrobial properties of Campomanesia pubescens O. Berg, native of Brazilian Cerrado. Lat. Am. J. Pharm. 30(9):1843–1848.
Chi, G., Wei, M., Xie, X., Soromou, L.W., Liu, F., & Zhao, S. (2013). Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation 36(2):501–511. https://doi.org/10.1007/s10753-012-9571-1
Costa, H.M. da, Fiuza, T. de S., Ferreira, H.D., Abrao, F.Y., Romano, C.A., Borges, L.L., & Paula, J.R. de. (2021). Morphoanatomical study, seasonal variation, and larvicidal activity of volatile oils from the leaves of Campomanesia pubescens (DC.) O. Berg (Myrtaceae). Res. Soc. Dev. 10(3):e35610313412. https://doi.org/10.33448/rsd-v10i3.13412
Coutinho, I.D., Cardoso, C.A.L., Ré-Poppi, N., Melo, A.M., Vieira, M.D.C., Honda, N.K., & Coelho, R.G. (2009). Gas Chromatography-Mass Spectrometry (GC-MS) and evaluation of antioxidant and antimicrobial activities of essential oil of Campomanesia adamantium (Cambess.) O. Berg (Guavira). Brazilian J. Pharm. Sci. 45(4):767–776. https://doi.org/10.1590/S1984-82502009000400022
Coutinho, I.D., Poppi, N.R., & Cardoso, C.L. (2008). Identification of the volatile compounds of leaves and flowers in Guavira (Campomanesia adamantium O. Berg.). J. Essent. Oil Res. 20(5):405–407. http://dx.doi.org/10.1080/10412905.2008.9700041
D’alessio, P.A., Ostan, R., Bisson, J.F., Schulzke, J.D., Ursini, M. V., & Béné, M.C. (2013). Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sci. 92(24–26):1151–1156. https://doi.org/10.1016/j.lfs.2013.04.013
Duarte, L.D.S., Pereira, M.T.M., Pascoal, V.D.B., & Pascoal, A.C.R.F. (2020). Campomanesia genus – a literature review of nonvolatile secondary metabolites, phytochemistry, popular use, biological activities, and toxicology. Eclética Química J. 45(2):12-22. DOI: 10.26850/1678-4618eqj.
Fernandes, T. de O., Ávila, R.I. de, Moura, S.S. de, Ribeiro, G. de A., Naves, M.M.V., & Valadares, M.C. (2015). Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity. Toxicol. Reports (2):184–193. https://doi.org/10.1016/j.toxrep.2014.11.018
Flora do Brasil. (2020). Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/.
Freitas, I.R., & Cattelan, M.G. (2018). Chapter 15 - Antimicrobial and Antioxidant Properties of Essential Oils in Food Systems— An Overview. Microbial Contamination and Food Degradation. Handbook of Food Bioengineering. 443 - 470.
Garcia; H.O., Pacheco, L.A., Nuñez, J.G., Pinto, G.C., La Porta, V.G., Padilha, G.L., Ethur, E.M., Hoehne, L,.& Bruno, A.N. (2020). Essential oil of Campomanesia aureas: chemical composition and anti-neoplastic potential in-vitro. Int. J. Pharmacogn. 7(12):361–368.
Guan, W., Li, S., Yan, R., Tang, S., & Quan, C. (2007). Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 101(4):1558–1564. https://doi.org/10.1016/j.foodchem.2006.04.009
Hanif, M.U., Hussain, A.I., Chatha, S.A.S., Kamal, G.M., & Ahmad, T. (2018). Variation in Composition and Bioactivities of Essential Oil from Leaves of Two Different Cultivars of Psidium guajava L. J. Essent. Oil-Bearing Plants 21(1):65–76. https://doi.org/10.1080/0972060X.2018.1431152
Hassine, D.B., Kammoun El Euch, S., Rahmani, R., Ghazouani, N., Kane, R., Abderrabba, M., & Bouajila, J. (2021). Clove Buds Essential Oil: The Impact of Grinding on the Chemical Composition and Its Biological Activities Involved in Consumer’s Health Security. Biomed Res. Int. 940591:1–11. https://doi.org/10.1155/2021/9940591
Hirschmann, G.S. (1988). Ethnobotanical observations on paraguayan Myrtaceae. I. J. Ethnopharmacol., 22(1), 73-79. https://doi.org/10.1016/0378-8741(88)90232-2
Hyldgaard, M., Mygind, T., & Meyer, R.L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3(12):1–24. https://doi.org/10.3389/fmicb.2012.00012
Jesus, G.S., Micheletti, A.C., Padilha, R.G., Souza de Paula, J. de, Alves, F.M., Leal, C.R.B., Garcez, F.R., Garcez, W.S., & Yoshida, N.C. (2020). Antimicrobial potential of essential oils from cerrado plants against multidrug-resistant foodborne microorganisms. Molecules 25(14):1–10. https://doi.org/10.3390/molecules25143296
Khorshidian, N., Yousefi, M., Khanniri, E,. & Mortazavian, A.M. (2018). Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 45:62–72. https://doi.org/10.1016/j.ifset.2017.09.020
Klink, C.A., & Machado, R.B. (2005). Conservation of the Brazilian Cerrado. Conserv. Biol. 19(3):707–713.
Kuhn, D., Ziem, R., Scheibel, T., Buhl, B., Vettorello, G., Pacheco, L.A., Heidrich, D., Kauffmann, C., De Freitas, E.M., Ethur, E.M., & Hoehne, L. (2019). Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. Food Sci. Technol. 108:247–252. https://doi.org/10.1016/j.lwt.2019.03.079
Kuster, V.C., & Vale, F.H.A. (2016). Leaf histochemistry analysis of four medicinal species from Cerrado. Brazilian J. Pharmacogn. 26(6):673 - 678. https://doi.org/10.1016/j.bjp.2016.05.015
Leão, M.M., Dellaqua, G.F., Ferreira, M.D., Hubinger, S.Z., Marques, M.O.M., & Spoto, M.H.F. (2017). The Potencial of Campomanesia phaea O. Berg Landrum (Cambuci) as Natural Source of Vitamin C. Athens J. Sci. 4(1):37–46. http://dx.doi.org/10.30958/ajs.4-1-3
Lescano, C.H., Lima, F.F. de, Caires, A.R.L., & Oliveira, I.P. de. (2019). Polyphenols Present in Campomanesia Genus: Pharmacological and Nutraceutical Approach. 2 ed. Elsevier Inc. Cap 25.
Lescano, C.H., De Lima, F.F., Mendes-Silvério, C.B., Justo, A.F.O., Baldivia, D. da S., Vieira, C.P., Sanjinez-Argandoña, E.J., Cardoso, C.A.L., Mónica, F.Z., & De Oliveira, I.P. (2018). Effect of polyphenols from Campomanesia adamantium on platelet aggregation and inhibition of cyclooxygenases: Molecular docking and in vitro analysis. Front. Pharmacol. 9(617):1–13. https://doi.org/10.3389/fphar.2018.00617
Lewinsohn, T.M., & Prado, P.I. (2005). How many species are there in Brazil? Conserv. Biol. 19(3):619–624. http://dx.doi.org/10.1111/j.1523-1739.2005.00680.x
Lima, N.V. de, Arakaki, D.G., Tschinkel, P.F.S., Silva, A.F., Guimarães, R. de C.A., Iane, P.H., Ferreira Júnior, M.A., & Nascimento, V.A. do (2016). First comprehensive study on total determination of nutritional elements in the fruit of the Campomanesia adamantium (Cambess.): Brazilian cerrado plant. Int. Arch. Med. 9(350):1–11. https://doi.org/10.3823/2221
Limberger, R.P., Apel, M.A., Sobral, M., Moreno, P.R.H., Henriques, A.T., & Menut, C. (2001). Chemical composition of essential oils from some Campomanesia species (Myrtaceae). J. Essent. Oil Res. 13(2):113–115. https://doi.org/10.1080/10412905.2001.9699630
Macedo, J.G.F., Rangel, J.M.L., Santos, M. de O., Camilo, C.J., Da Costa, J.G.M., & Souza, M.M.de A. (2021). Therapeutic indications, chemical composition and biological activity of native Brazilian species from Psidium genus (Myrtaceae): A review. J. Ethnopharmacol. 278:114248. https://doi.org/10.1016/j.jep.2021.114248
Machate, D.J., Candido, C.J., Inada, A.C., Franco, B.C., Carvalho, I.R.A. de, Oliveira, L.C.S. de, Cortes, M.R., Caires, A.R.L., Silva, R.H. da, Hiane, P.A., Bogo, D., Lima, N.V. De, Nascimento, V.A. do, Guimarães, R. de C.A., & Pott, A. (2020). Fatty acid profile and physicochemical, optical and thermal characteristics of Campomanesia adamantium (Cambess.) O. Berg seed oil. Food Sci. Technol. 40(2):538-544. https://doi.org/10.1590/fst.32719
Marin, R., Apel, M.A., Limberger, R.P., Raseira, M.C.B., Pereira, J.F.M., Zuanazzi, J.Â.S., & Henriques, A.T. (2008). Volatile components and antioxidant activity from some myrtaceous fruits cultivated in Southern Brazil. Lat. Am. J. Pharm. 27(2):172–177.
Medino, I., Tonini, I.G.O., Amaral, L.A., Loubet Filho, P.S., Santos, E.F., & Novello, D. (2019). Cookie adicionado de farinha de resíduos de Guavira: Composição físico-química e análise sensorial. Evidência 19(1):7–22. https://doi.org/10.18593/eba.v19i1.20287
Mendes, K.D.S., Silveira, R.C.C.P., & Galvão, C.M (2019). Use of the bibliographic reference manager in the selection of primary studies in integrative reviews. Texto & Contexto-Enfermagem. 28(e20170204).
Menezes Filho, A.C.P. de, Sousa, W.C. de, & Castro, C.F. de S. (2020). Composição química, físico-química e atividade antifúngica dos óleos essenciais da flor e do fruto de Myrcia guianensis (Aubl.) DC. Rev. Principia - Divulg. Científica e Tecnológica do IFPB 1(52):92-104.
Menezes, I.A.C., Barreto, C.M.N., Antoniolli, Â.R., Santos, M.R.V. & De Sousa, D.P. (2010). Hypotensive activity of terpenes found in essential oils. Zeitschrift fur Naturforsch. C 65(9–10):562–566. https://doi.org/10.1515/znc-2010-9-1005
Mittermeier, R.A., Gil, P.R., & Mittermeier, C.G. (1997). Megadiversity: Earth’s biologically wealthiest nations. Cemex, Mexico.
Mourabit, N., Arakrak, A., Bakkali, M., Bakrim, H., Hilal, B. & Laglaoui, A. (2020). Antibacterial activity of the essential oils against multiresistant bacterial strains isolated from hospital. J. Anal. Sci. Appl. Biotechnol 2(2):92–98. https://doi.org/10.48402/IMIST.PRSM/jasab-v2i2.23840
Nascimento, K.F. do, Moreira, F.M.F., Alencar Santos, J., Kassuya, C.A.L., Croda, J.H.R., Cardoso, C.A.L., Vieira, M. do C., Góis Ruiz, A.L.T., Ann Foglio, M., Carvalho, J.E. de, & Formagio, A.S.N. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 210:351–358. http://dx.doi.org/10.1016/j.jep.2017.08.030
Oliveira, J.D., Alves, C.C.F., Miranda, M.L.D., Martins, C.H.G., Silva, T.S., Ambrosio, M.A.L.V., Alves, J.M., & Silva, J.P. (2016). Rendimento, composição química e atividades antimicrobiana e antioxidante do óleo essencial de folhas de Campomanesia adamantium submetidas a diferentes métodos de secagem. Rev. Bras. Plantas Med. 18(2):502–510. https://doi.org/10.1590/1983-084X/15_206
Oliveira, J.D. de, Alves, D.K.M., Miranda, M.L.D., Alves, J.M., Xavier, M.N., Cazal, C. de M., & Alves, C.C.F. (2017). Chemical composition of essential oil extracted from leaves of Campomanesia adamantium subjected to different hydrodistillation times. Ciência Rural 47(1):1–7. https://doi.org/10.1590/0103-8478cr20151131
Oliveira, V. S.; Argandoña, E. J. S., & Oshiro, A.M. (2018). Atomização e liofilização da polpa de Campomanesia adamantium: influência das variáveis de processo na retenção de vitamina C. Campo Grande: Novas Edições Acadêmicas.
Pacheco, L.A., Ethur, E.M., Sheibel, T., Buhl, B., Weber, A.C., Kauffmann, C., Marchi, M.I., Freitas, E.M., & Hoehne, L. (2021). Chemical characterization and antimicrobial activity of Campomanesia aurea against three strains of Listeria monocytogenes. Brazilian J. Biol. 81(1):69–76. https://doi.org/10.1590/1519-6984.219889.
Pascoal, A.C.R.F., Lourenço, C.C., Sodek, L., Tamashiro, J.Y., Franchi, G.C., Nowill, A.E., Stefanello, M.É.A., & Salvador, M.J. (2011). Essential oil from the leaves of Campomanesia guaviroba (DC.) Kiaersk. (Myrtaceae): Chemical composition, antioxidant and cytotoxic activity. J. Essent. Oil Res. 23(5):34–37. https://doi.org/10.1080/10412905.2011.9700479
Peres, C.A. (2005). Why We Need Megareserves in Amazonia. Conserv. Biol. 19(3):728–733. http://dx.doi.org/10.1111/j.1523-1739.2005.00691.x
Piccinelli, A.C., Santos, J.A., Konkiewitz, E.C., Oesterreich, S.A., Formagio, A.S.N., Croda, J., Ziff, E.B., & Kassuya, C.A.L. (2015). Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutr. Neurosci. 18(5):217–224. https://doi.org/10.1179/1476830514Y.0000000119
Projeto Mapbiomas. (2021). Coleção 6.0 da Série Anual de Mapas de Uso e Cobertura da Terra do Brasil. https://plataforma.brasil.mapbiomas.org.
Radünz, M., Trindade, M.L.M. da, Camargo, T.M., Radünz, A.L., Borges, C.D., Gandra, E.A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 276:180–186. https://doi.org/10.1016/j.foodchem.2018.09.173
Rao, J., Chen, B., & Mcclements, D.J. (2019). Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu. Rev. Food Sci. Technol. 10:365–387. https://doi.org/10.1146/annurev-food-032818-121727
Raven, P.H., Evert, R.F., & Eichhorn, S. (2007). Biologia vegetal. 7 ed. Guanabara Koogan, Rio de Janeiro.
Reis, A.F., & Schmiele, M. (2019). Características e potencialidades dos frutos do Cerrado na indústria de alimentos. Brazilian J. Food Technol. 22: e2017150. https://doi.org/10.1590/1981-6723.15017
Santana, N.A., Silva, R.C.S.da, Fourmentin, S., Anjos, K.F.L. dos, Ootan, M.A., Silva, A.G. da, Pereira Araújo, B.G., Santos Correia, M.T. dos, Silva, M.V. da, & Machado, G. (2020). Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin. J. Drug Deliv. Sci. Technol. 60:101876. https://doi.org/10.1016/j.jddst.2020.101876
Schneider, V.S., Bark, J.M., Winnischofer, S.M.B., Santos, E.F. dos, Iacomini, M., & Cordeiro, L.M.C. (2020). Dietary fibres from guavira pomace, a co-product from fruit pulp industry: characterization and cellular antioxidant activity. Food Res. Int. 132:109065. https://doi.org/10.1016/j.foodres.2020.109065
Sá, S., Chaul, L.T., Alves, V.F., Fiuza, T.S., Tresvenzol, L.M.F., Vaz, B.G., Ferri, P.H., Borges, L.L., & Paula, J.R. (2018). Phytochemistry and antimicrobial activity of Campomanesia adamantium. Brazilian J. Pharmacogn. 28(3):303–311. https://doi.org/10.1016/j.bjp.2018.02.008
Santos, A.L. dos, Polidoro, A. Dos S., Cardoso, C.A.L., Batistote, M., Do Carmo Vieira, M., Jacques, R.A., & Caramão, E.B. (2019). GC×GC/qMS analyses of Campomanesia guazumifolia (Cambess.) O. Berg essential oils and their antioxidant and antimicrobial activity. Nat. Prod. Res. 33(4):593–597. https://doi.org/10.1080/14786419.2017.1399383
Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. Antioxidants. IntechOpen, London.
Shishir, M.R.I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 78:34–60. https://doi.org/10.1016/j.tifs.2018.05.018
Siddique, S., Parveen, Z., Firdaus-E-Bareen, & Mazhar, S. (2020). Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab. J. Chem. 13(1):67–74. http://dx.doi.org/10.1016/j.arabjc.2017.01.018
Silva, A.N., Uetanabaro, A.P.T., & Lucchese, A.M. (2013). Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae). Nat. Prod. Commun. 8(2):269–271. https://doi.org/10.1177%2F1934578X1300800235
Silva, C.G.F., Lucas, A.M., Santo, A.T. do E., Almeida, R.N., Cassel, E., & Vargas, R.M.F. (2019a). Sequential processing of Psidium guajava L. leaves: steam distillation and supercritical fluid extraction. Brazilian J. Chem. Eng. 36(1):487–496. https://doi.org/10.1590/0104-6632.20190361s20170215
Silva, H. D. M., Perfeito, D. G. A., Silva, A. R., & Peixoto, N. (2017). Caracterização e estudo da estabilidade física de suco misto adoçado de mangaba e cagaita. Revista de Agricultura Neotropical, 4(2):81-87. http://dx.doi.org/10.32404/rean.v4i2.1542
Silva, J.R.M., Cardoso, C.A.L., & Re-Poppi, N. (2009a). Essential oil composition of the leaves of Campomanesia pubescens. Chem. Nat. Compd. 45(4):565–567. http://dx.doi.org/10.1007/s10600-009-9368-0
Silva, J.R.M., Ré-Poppi, N., & Cardoso, C.A.L. (2009b). Fruit oil of Campomanesia pubescens (Myrtaceae). J. Essent. Oil Res. 21(4):315–316. http://dx.doi.org/10.1080/10412905.2009.9700180
Silva, L.E., Amaral, W. Do, Deschamps, C., Biasi, L.A., Bizzo, H.R., & Pinto, M.A.S. (2019b). Essential oil yield and composition of native species of the Myrtaceae family from “Campos Gerais” of the Atlantic Forest in Parana State. Ciência e Nat. 41:e45. http://dx.doi.org/10.5902/2179460X40405
Silva, L.E., Gonçalves, M.V.S., Amaral, W.A. do, Quadros, D.A. de, Reis, R.A., Amaral, L.D.P. do, Huergo, L.F., & Garcia, B.(2018). Chemical composition and antibacterial activity of Cymbopogon citratus and Cymbopogon flexuosus essential oils. Ciência e Nat. 40:e2. http://dx.doi.org/10.5902/2179460X27569
Simões, C. M. O., & Spitzer, V. (2000). Óleos voláteis. In: Farmacognosia. UFRGS, Porto Alegre/RS.
Souza, J.L. da C., Silva, L.B. E, Reges, N.P.R., Mota, E.E.S., & Leonídio, R.L. (2019). Caracterização física e química de gabiroba e murici. Rev. Ciências Agrárias 42(3):221–230. https://doi.org/10.1590/0100-2945-036/14
Stefanello, M.É.A., Cervi, A.C., Wisniewski, A., & Simionatto, E.L. (2008). Essential oil composition of Campomanesia adamantium (Camb) O. Berg. J. Essent. Oil Res. 20(5):424–425. https://doi.org/10.1590/0103-8478cr20151131
Teixeira, N., Melo, J.C.S., Batista, L.F., Paula-Souza, J., Fronza, P., & Brandão, M.G.L. (2019). Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Res. Int. 119:325-348. https://doi.org/10.1016/j.foodres.2019.01.058
Vallilo, M.I, Bustillos, O.V., & Aguiar, O.T.de (2006a). Identificação de terpenos no óleo essencial dos frutos de Campomanesia adamantium (Cambessédes) O. Berg. - Myrtaceae. Rev. Inst. Flor. 18:15-22.
Vallilo, M.I., Lamardo, L.C.A., Gaberlotti, M.L., Oliveira, E., & Moreno de, P.R.H. (2006b). Composição química dos frutos de Campomanesia adamantium (Cambessédes) O. Berg. Cienc. e Tecnol. Aliment. 26(4):805–810. http://dx.doi.org/10.1590/S0101-20612006000400015
Vasconcelos, L.C., Santos, E. de S., Mendes, L.A., Ferreira, M.F. da S., & Praça-Fontes, M.M. (2021). Chemical composition, phytotoxicity and cytogenotoxicity of essential oil from leaves of Psidium guajava L. cultivars. Res. Soc. Dev. 10(9):e6110917710. https://doi.org/10.33448/rsd-v10i9.17710
Viscardi, D.Z., Arrigo, J.D.S., Correia, C.A.C. de, Kassuya, C.A.L., Cardoso, C.A.L., Maldonade, I.R., & Argandoña, E.J.S. (2017a). Seed and peel essential oils obtained from Campomanesia adamantium fruit inhibit inflammatory and pain parameters in rodents. PLoS One 12(2):1–15. https://doi.org/10.1371/journal.pone.0157107
Viscardi, D.Z., Oliveira, V.S. de, Arrigo, J.da S., Piccinelli, A.C., Cardoso, C.A L., Maldonade, I.R., Kassuya, C.A.L., & Sanjinez-Argandoña, E.J. (2017b). Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp. Brazilian J. Pharmacogn 27:220 – 227. http://dx.doi.org/10.1016/j.bjp.2016.09.007
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Márcia Crestani Bin; Sandro Menezes Silva; Dênia Mendes de Sousa Valladão; Eliana Janet Sanjinez Argandoña
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.