Potencial antibiótico de nanopartículas de plata estabilizada en extracto hidroalcohólico de matruz (Chenopodium ambrosioides)
DOI:
https://doi.org/10.33448/rsd-v11i13.35101Palabras clave:
Farmacorresistencia bacteriana; Nanopartículas metálicas; Chenopodium ambrosioides.Resumen
La resistencia bacteriana es uno de los mayores desafíos de la salud mundial, impactando alrededor de 700.000 muertes por año, además de consecuencias dramáticas en los hospitales y la sociedad. Aunque es un problema creciente y altamente amenazante, la cantidad de medicamentos efectivos disponibles para combatir estas superbacterias es cada vez más limitada, lo que enfatiza la importancia de buscar nuevas opciones para la terapia con antibióticos. Este estudio tuvo como objetivo producir nanopartículas de plata estabilizadas en extracto hidroalcohólico de mastruz; caracterizarlos a través del Ultravioleta Visible (UV-Vis); evaluar la estabilidad de las nanopartículas de plata a las 48h y 72h, caracterizar el extracto hidroalcohólico de mastruz mediante el estudio espectrofotométrico y analizar el potencial bactericida de las nanopartículas de plata. Las nanopartículas de plata fueron desarrolladas a través de síntesis verde, posteriormente caracterizadas por Análisis Ultravioleta Visible (UV-Vis) y aplicadas a cultivos de bacterias Gram negativas (Escherichia coli, Pseudomonas aeruginosa y Klebsiella pneumoniae) y Gram positivas (Staphylococcus aureus). Las nanopartículas fueron producidas a través de la síntesis verde, mostraron un pico máximo de absorción de 400 nm en el estudio espectrofotométrico y se mantuvieron estables a las 48h y 72h de la síntesis. El extracto hidroalcohólico de mastruz mostró dos picos de máxima absorción (332 nm y 674 nm) en el análisis espectrofotométrico. También se observó la actividad bactericida de las nanopartículas de plata, mediante la presencia de halos de inhibición de aproximadamente 14 mm en los cultivos ensayados.
Citas
Ávila-Blanco, M. E., Rodríguez, M. G., Moreno Duque, J. L., Muñoz-Ortega, M., & Ventura-Juárez, J. (2014). Amoebicidal activity of essential oil of dysphania ambrosioides (L.) mosyakin & clemants in an amoebic liver abscess hamster model. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/930208
Barros, L., Pereira, E., Calhelha, R. C., Duenas, M., Carvalho, A. M., Santos-Buelga, C., & Ferreira, I. C. F. R. (2013). Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. Jounal of Functional Foods, 5, 1732–1740. https://doi.org/10.1016j/j-jff.2013.07.019
Bezerra, J. W. A., Costa, A. R., Freitas, M. A. de, Rodrigues, F. C., Souza, M. A., Silva, A. R. P., Santos, A. T. L. dos, Linhares, K. V., Coutinho, H. D. M., Silva, J. R. L., & Morais-Braga, M. F. B. (2019). Chemical composition, antimicrobial, modulator and antioxidante activity of essential oil of Dysphania ambrosioides (L.). Comparative Immunology, Microbiology and Infectious Diseases, 65, 58–64. https://doi.org/10.1016/j.cimid.2019.04.010
Boutkhil, S., el Idrissi, M., Amechrouq, A., Chbicheb, A., Chakir, S., & el Badaoui, K. (2009). Chemical composition and antimicrobial activity of crude, aqueous, ethanol extracts and essential oils of Dysphania ambrosioides (L.) Mosyakin & Clemants. Acta Botanica Gallica, 156(2), 201–209. https://doi.org/10.1080/12538078.2009.10516151
Burt, S. (2004). Essential oils: their antibacterial properties andpotencial applications in foods-a review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Cavassin, E. D., de Figueiredo, L. F. P., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., Marangoni, V. S., Zucolotto, V., Levin, A. S. S., & Costa, S. F. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1). https://doi.org/10.1186/s12951-015-0120-6
CLSI. (2009). Performance standards for antimicrobial disk susceptibility tests; approved standard-tenth edition M02-A10. v. 29, n. 1. Clinical and Laboratory Standards Institute.
de Brito, J. E., Viana, D. dos S. F., Viana, V. G. F., & de Figueirêdo, G. S. (2022). Ação antimicrobiana das nanopartículas de prata (AgNPs) estabilizadas em extrato de jurema preta (Mimosa tenuiflora (Willd.,) Poir.). Research, Society and Development, 11(8), 1–7. https://doi.org/10.33448/res-v11i8.30617
de Brito, J. E., Viana, D. dos S. F., & Viana, V. G. F. V. (2022). Síntese verde e caracterização de nanopartículas de prata AgNp estabilizadas em extrato de jurema preta (Mimosa Tenuiflora). Research Society and Development, 11(6), 1–8. https://doi.org/10.33448/rsd-v11i6.29051
de Queiroz, A. C., de Lima Matos Freire Dias, T., da Matta, C. B. B., Cavalcante Silva, L. H. A., de Araújo-Júnior, J. X., de Araújo, G. B., de Barros Prado Moura, F., & Alexandre-Moreira, M. S. (2014). Antileishmanial activity of medicinal plants used in endemic areas in Northeastern Brazil. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/478290
Gois, M. A. F., Lucas, F. C. A., Costa, J. C. M., Moura, P. H. B., & Lobato, G. J. M. (2016). Etnobotânica de espécies vegetais medicinais no tratamento de transtornos do sistema gastrointestinal. Revista Brasileira de Plantas Medicinais, 18(2), 547–557. https://doi.org/10.1590/1983-084X/15_170
Grassi, L. T., Malheiros, A., Meyre-Silva, C., Buss, Z. S., Monguilhott, E. D., Frode, T. S., & Silva, K. A. B. S. da. (2013). From popular use to pharmacological validation: a study of the anti- inflamatory, anti- nociceptive and healing effects of Chenopodium ambrosioides extract. Journal of Ethopharmacology, 145, 1217–138. https://doi.org/10.1016j/j.jep.2012.10.040
Hajtuch, J., Hante, N., Tomczyk, E., Wojcik, M., Radomski, M. W., Santos-Martinez, M. J., & Inkielewicz-Stepniak, I. (2019). Effects of functionalized silver nanoparticles on aggregation of human blood platelets. International Journal of Nanomedicine, 14, 7399–7417. https://doi.org/10.2147/IJN.S213499
Jesus, R. S., Piana, M., Freitas, R. B., Brum, T. F., Alves, C. F. S., Belke, B. V., Mossmann, N. J., Cruz, R. C., Santos, R. C. v., Dalmolin, T. V., Bianchini, B. V., Campos, M. M. A., & Bauermann, L. de F. (2018). In vitro antimicrobialand antimucobacterial activity and HPLC- DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian Journal of Microbiology, 2018, 296–302. https://doi.org/10.1016/j.bjm.2017.02.012
Knauth, P., Acevedo-Hernández, G. J., Cano, M. E., Gutiérrez-Lomelí, M., & López, Z. (2018). In Vitro Bioactivity of Methanolic Extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. Used in Traditional Medicine in Mexico. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/3610364
Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. In International Journal of Molecular Sciences 20(4). MDPI AG. https://doi.org/10.3390/ijms20040865
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. v., Li, D., & Alverez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial Control: potential applications and implications. Water Research, 42, 4591–5602. https://doi.org/10.1016/j.watres.2008.08.015
Lkhagvajav, N., Yaşa, I., Çelik, E., Koizhaiganova, M., & Sari, Ö. (2011). Antimicrobial activity of colloidal silver nanoparticles prepared by sol gel method. Digest Journal of Nanomaterials and Biostructures, 6(1), 149–154.
Lobanovska, M., & Pilla, G. (2017). Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale Journal of Biology and Medicine, 90, 135–145.
Mallmann, E. J. J., Cunha, F. A., Castro, B. N. M. F., Maciel, A. M., Menezes, E. A., & Fechine, P. B. A. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Revista Do Instituto de Medicina Tropical de Sao Paulo, 57(2), 165–167. https://doi.org/10.1590/S0036-46652015000200011
Mathur, P., Jha, S., Ramteke, S., & Jain, N. K. (2018). Pharmaceutical aspects of silver nanoparticles. In Artificial Cells, Nanomedicine and Biotechnology (Vol. 46, Issue sup1, pp. 115–126). Taylor and Francis Ltd. https://doi.org/10.1080/21691401.2017.1414825
Nandi, S. K., Shivaram, A., Bose, S., & Bandyopadhyay, A. (2018). Silver nanoparticle deposited implants to treat osteomyelitis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1073–1083. https://doi.org/10.1002/jbm.b.33910
Nascimento, F. R. F., Cruz, G. V. B., Pereira, P. V. S., Maciel, M. C. G., Silva, L. A., Azevedo, A. P. S., Barroqueiro, E. S. B., & Guerra, R. N. M. (2006). Ascitic and solid Ehrlich tumor inhibitioin by Chenopodium ambrosiodes L. treatmente. Life Sciences, 78, 2650–2653. https://doi.org/10.1016/j.lfs.2005.10.006
Neto, F. F. (2012). Determinação do teor de diclofenaco de sódio em comprimidos por espectroscopia no infravermelho próximo - NIR com calibração multivirada – PLS. Universidade Federal do Rio Grande do Norte.
Noguez, C. (2007). Surface plasmons on metal nanoparticles: The influence of shape and physical environment. Journal of Physical Chemistry C, 111(10), 3606–3619. https://doi.org/10.1021/jp066539m
Oliveira-Tintino, C. D. de M., Tintino, S. R., Limaverde, P. W., Figueredo, P. S., Lima, L. F., Matos, Y. M. L. S. de, Coutinho, H. D. M., Siqueira-Júnior, J. P., Balbino, V. Q., & Silva, T. G. da. (2018). Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chemistry, 262, 72–77. https://doi.org/10.1016/j.foodchem.2018.04.040
Penha, E. S., Lacerda-Santos, R., Carvalho, M. G. F., & Oliveira, P. T. (2017). Effect of Chenopodium ambrosioides on the healing process of the in vivo bone tissue. Microscopy Research and Technique, 80(11), 1167–1173. https://doi.org/10.1002/jemt.22913
Pereira, N. L. F., Aquino, P. E. A., Silva, M. R., Nascimento, E. M., Grangeiro, A. R. S., Oliveira, C. D. M., Tintino, S. R., Figueiredo, F. G., Veras, H. N. H., & Menezes, I. R. A. (2015). Efeito antibacteriano e anti-inflamatório tópico do extrato metanólico de Chenopodium ambrosioides L. Revista Fitos, 9(2). https://doi.org/10.5935/2446-4775.20150009
Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., & Srinivasan, P. (2013). Biologically synthesized green silver nanparticles from leaf extact of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 48, 317–324. https://doi.org/10.1016/j.procbio.2012.12.013
Ribeiro, L. H. L. (2019). Análise dos programas de plantas medicinais e fitoterápicos no Sistema Único de Saúde (SUS) sob a perspectiva territorial. Ciencia & Saude Coletiva, 24(5), 1733–1742. https://doi.org/10.1590/1413-81232018245.15842017
Santana, M. C., Leandro, D., Gomes, R., & Paula De Souza Marcone, G. (2015). Avaliação da atividade antimicrobiana de nanopartículas de prata. Perspectivas Da Ciência e Tecnologia, 7(1), 36–45.
Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., & Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 103(2), 881–891. https://doi.org/10.1007/s00253-018-9488-1
Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79–84. https://doi.org/10.1007/s00449-008-0224-6
Souza, J. P. J. de. (2014). Efeito anti-inflamatório do extrato hidroalcoólico de folhas de Chenopodium ambrosioides L. na bexiga de ratos submetidos à cistotomia. Universidade Federal do Maranhão.
Viana, A. V., Viana, D. dos S. F., de Figueirêdo, G. S., de Brito, J. E., Viana, V. G. F. V., & Junior, V. G. F. V. (2021). Potencial antimicrobiano das nanopartículas de prata estabilizadas em curcumina e extrato de folhas de cajueiro (Anacardium occidentale L.). Research, Society and Development, 10(9), 1–10. https://doi.org/10.33448/rsd-v10i9.18364
WHO. (2015). Global Action Plan on Antimicrobial Resistance (World Health Organization, Ed.). www.paprika-annecy.com
Wong, K. K. Y., & Liu, X. (2010). Silver nanoparticles - The real “silver bullet” in clinical medicine? MedChemComm, 1(2), 125–131. https://doi.org/10.1039/c0md00069h
Ye, H., Liu, Y., Li, N., Yu, J., Cheng, H., Li, J., & Zhang, X. Z. (2015). Anti-Helicobacter pylori activities of Chenopodium ambrosioides L. in vitro and in vivo. World Journal of Gastroenterology, 21(14), 4178–4183. https://doi.org/10.3748/wjg.v21.i14.4178
Zago, P. M. W., dos Santos Castelo Branco, S. J., de Albuquerque Bogéa Fecury, L., Carvalho, L. T., Rocha, C. Q., Madeira, P. L. B., de Sousa, E. M., de Siqueira, F. S. F., Paschoal, M. A. B., Diniz, R. S., & Gonçalves, L. M. (2019). Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Frontiers in Microbiology, 10(JULY). https://doi.org/10.3389/fmicb.2019.01724
Zhang, K., Lui, V. C. H., Chen, Y., Lok, C. N., & Wong, K. K. Y. (2020). Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63464-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Camyla Carvalho Almeida Pinto; Vicente Galber Freitas Viana Junior; Vicente Galber Freitas Viana; Deuzuita dos Santos Freitas Viana
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.