Vegetales mínimamente procesados comercializados en la ciudad de Rio de Janeiro: investigación de Stenotrophomonas maltophilia, Pseudomonas aeruginosa y de Salmonella spp.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i13.35534

Palabras clave:

Bacterias; Stenotrophomonas maltophlia; Pseudomonas aeruginosa; Salmonella spp; Vegetales mínimamente processados.

Resumen

Introducción: Los vegetales mínimamente procesados se reconocen cada vez más como vehículos importantes para la transmisión de patógenos humanos. La importancia clínica de S. maltophilia, P. aeruginosa y Salmonela spp. ha sido reconocido por ser un importante microorganismo patógeno oportunista. Se sabe que la alimentación es la principal vía para que las bacterias ingresen al tracto gastrointestinal humano, y las bacterias con genes de resistencia a los antibióticos ingeridos podrían transferir tales genes a bacterias patógenas u oportunistas en el tracto gastrointestinal. Objetivo: El objetivo de este trabajo fue investigar la presencia de Stenotrophomonas maltophilia, Pseudomonas aeruginosa y Salmonela spp. en vegetales mínimamente procesados ​​y comercializados en la ciudad de Río de Janeiro por el método de reacción en cadena de la polimerasa. Metodología: Fueron colectadas 30 muestras de vegetales mínimamente procesados de diferentes tipos desde marzo de 2017 hasta marzo de 2018. Para identificar la presencia de bacterias en las muestras se realizó extracción de ADN con posterior análisis de Reacción en Cadena de la Polimerasa y visualización en gel de agarosa. Resultados y Discusión: En el presente estudio, ninguna de las 30 muestras analizadas por PCR contenía Stenotrophomonas maltophilia, Pseudomonas aeruginosa y Salmonela spp. Conclusión: El resultado encontrado no descarta la presencia de estas bacterias en vegetales mínimamente procesados, que ya han sido encontrados en varios estudios. Los vegetales mínimamente procesados tienen una gran microbiota con diferentes géneros de bacterias y estas con resistencia a los antibióticos, lo que puede convertirse en un riesgo para los consumidores.

Citas

Ali B. (2019). Functional and genetic diversity of bacteria associated with the surfaces of agronomic plants. Plants 8:91.

Allydice-Francis, K., and Brown, P. D. (2012). Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. Int. J. Microbiol. 2012:426241

Alonso, A., De La Fuente, C., Martín-arnau, A. M., Irala, J., Martínez, J. A., Martínez-González, M. A. (2004). Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) Study. Br J Nutr. 92(2): 311-9.

Aloush, V., Navon-Venezia, S., Seigman-Igra, Y., Cabili, S., Carmeli, Y. (2006) Multidrug-resistant. Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 50:43-8.

Alves, A. R. F. (2012). Doenças alimentares de origem bacteriana. 87f. Dissertação (Mestrado em Ciências Farmacêuticas). Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto.

Anuj, S. N., Whiley, D. M., Kidd, T. J., Bell, S. C., Wainwright, C. E., Nissen, M. D., & Sloots, T. P. (2009). Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagnostic microbiology and infectious disease, 63(2), 127-131.

Apisarnthanarak, A., Mayfield, J. L., Garison, T., McLendon, P. M., DiPersio, J. F., Fraser, V. J., & Polish, L. B. (2003). Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients: a case–control study. Infection Control & Hospital Epidemiology, 24(4), 269-274.

Araújo, M.S., Rodrigues, M.S.A., Silva, R.A.S., Martins, W.F., Araújo, A.S. (2011). Análise microbiológica de saladas servidas em restaurantes da cidade de Pombal – PB. Caderno Verde de Agroecologia e Desenvolvimento Sustentável, Pombal, 1(1), 1.

Authority, E. F. S. (2021). The European union one health 2019 zoonoses report. Efsa Journal, 19(2).

Babu, L., Reddy, P., Murali, H. S., & Batra, H. V. (2013). Optimization and evaluation of a multiplex PCR for simultaneous detection of a prominent foodborne pathogenes of Enterobacteriaceae. Ann Microbiol, Berlin, 63, 1591-1599.

Bastos, J., Lunet, N., Peleteiro, B., Lopes, C., & Barros, H. (2010). Dietary patterns and gastric cancer in a portuguese urban population. Int. J. Cancer.127(2): 433-41.

Berg, G., & Martinez, J. L. (2015). Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex. Front. Microbiol. 6:241.

Bennett, S. (2014). Increasing Number and Greater Morbidity and Mortality Associated with Multistate Foodborne Disease Outbreaks – United States, 1973–2010. In: 2014 ANNUAL MEETING, 2014, Tóquio, International Association for Food Protection, Des Moine.

Brandão M. L. L., Almeida, D. O., Bispo, F. C. P., Bricio, S. M. L., Marin, V. A., & Miagostovich, M. P. (2014). Assessment of Microbiological Contamination of Fresh, Minimally Processed, and Ready-to-Eat Lettuces (Lactuca sativa), Rio de Janeiro State, Brazil. J Food Sci, 79.

Brasil. (2019). Agência Nacional de Vigilância Sanitária. Resolução RDC no 331, de 23 de dezembro de 2019. Diário Oficial da União, Brasília, DF, 26 de dezembro de 2019.

Brasil. (2019). Agência Nacional de Vigilância Sanitária. Instrução Normativa n° 60, de 23 de dezembro de 2019. Diário Oficial da União, Brasília, DF, 23 de dezembo de 2019.

Brasil. (2014). Ministério da Saúde. Vigilância epidemiológica das doenças transmitidas por alimentos. Brasília, DF.

Brasil. (2001). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC, de 12 de janeiro.

Bernier, S., P.; Silo-Suh, L., Woods, D. E., Ohman, D. E., & Sokol, P. A. (2003). Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect. Immun. 71, 5306–5313.

Brasil (2001). Congresso. Senado. Resolução n.º 12, de 2 de janeiro. Aprova o Regulamento Técnico sobre padrões microbiológicos para alimentos. Diário Oficial [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Seção 1, p. 39.

Brooke, J. S. (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25:2–41.

Brown, S. P., Cornforth, D. M., & Mideo, N. (2012). Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 20, 336–342.

Dias, H. S., Pinto Júnior, W. R., Zanuto, M. E., Fonseca, N. T., Oliveira, A. S., & Porto, S. S. (2011). Avaliação microbiológica de saladas de vegetais com maionese, servidas em restaurantes comerciais self-service por quilo, na região Central de Vitória da Conquista, BA. Revista Higiene Alimentar, São Paulo, 25(194/195), .1 2.

Doustdar, F., Karimi, F., Abedinyfar, Z., Amoli, F. A., & Goudarzi, H. (2019) Genetic features of Pseudomonas aeruginosa isolates associated with eye infections referred to Farabi Hospital, Tehran, Iran. International Ophthalmology, 39, 1581–1587.

CDC - Centers for disease control and prevention. (2020). Questions and answers: Salmonella. https://www.cdc.gov/salmonella/general/index.html/. (Accessed 24 February 2019).

Cheng, Y. L., Lee, H. C., Yeung, C. Y., & Chan, W. T. (2009). Clinical significance in previously healthy children of Pseudomonas aeruginosain the stool. Pediatrics and Neonatology, 50(1), 13–17.

Choi, H. J., Kim, M. H., Cho, M. S., Kim, B. K., Kim, J. Y., Kim, C., & Park, D. S. (2013). Improved PCR for identification of Pseudomonas aeruginosa. Applied microbiology and biotechnology, 97(8), 3643–51, abr. 2013.

Cole, M., L. & Singh, O. V. (2018). Microbial occurrence and antibiotic resistance in ready-to-go food items. Journal of Food Science and Technology. 55(7), 2600–2609.

Correa, C. M. C., Tibana, A., & Gontijo Filho, P. P. (1991). “Vegetables as a source of infection with Pseudomonas aeruginosa in a university and oncology hospital of Rio de Janeiro,” Journal of Hospital Infection, 18(4), 301–306.

Costa, D., Bousseau, A., Thevenot, S., Dufour, X., Laland, C., Burucoa, C., & Castel, O. (2015). Nosocomial outbreak of Pseudomonas aeruginosa associated with a drinking water fountain. Journal of Hospital Infection. v.91, 3, p.271–274.

Craun, G. F., Calderon, R. L., & Craun, M. F. (2005). Outbreaks associated with recreational water in the United States. Int. J. Environ. Health Res. 15 (4), 243–262.

Ceuppens, S., Hessel, C. T., Rodrigues, R. Q., Bartz, S., Tondo, E. C., & Uyttendaele, M. (2014). Microbiological quality and safety assessment of lettuce production in Brazil. International Journal of Food Microbiology. 181, 67–76.

Chuanchuen, R., Ajariyakhajorn, K., Koowatananukul, C., Wannaprasat, W., Khemtong, S., & Samngamnim, S. (2010). Antimicrobial resistance and virulence genes in Salmonella enterica isolates from dairy cows. Foodborne Pathogens and Disease, 7(1), 63-69.

Cruz, M. R. G. D., Leite, Y. J. B. D. S., Marques, J. D. L., Pavelquesi, S. L. S., Oliveira, L. R. D. A., Silva, I. C. R. D., & Orsi, D. C. (2019). Microbiological quality of minimally processed vegetables commercialized in Brasilia, DF, Brazil. Food Science and Technology, 39, 498-503.

Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT-Food Science and Technology, 62(1), 801-806.

Elias, S. O., Tombini Decol, L., & Tondo, E. C. (2018). Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Quality and Safety, 2(4), 173-181.

Ferreira, C. C., Gregório, E. L., Costa, J. D., de Paula, R. B. O., de Araujo Neta, H. A. G., & Fontes, M. D. (2016). Análise de coliformes termotolerantes e Salmonella sp. em hortaliças minimamente processadas comercializadas em Belo Horizonte-MG. HU Revista, 42(4), 307-313.

Froder, H., Martins, C. G., Souza, K. L. O., Landgraf, M., Franco, B. D. G. M., & Destro, M. T. (2007). Minimally processed vegetable salads: Microbial quality evaluation. Journal of Food Protection. 70, 1277–1280

Fortuna, J. L., & Franco R. M. (2005). Pequeno dossiê epidemiológico da Salmonella, como causadora de infecções alimentares. Revista Higiene Alimentar. São Paulo. v.19, nº.128, p.33-44.

Gaglio, R., Francesca, N., Di Gerlando, R., Mahony, J., De Martino, S., Stucchi, C., Moschetti, G., Settanni, L. (2017). Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiol. 67:17–22.

Gallo, S. W., Ramos, P. L., Ferreira, C. A. S., & Oliveira, S. D. D. (2013). A specific polymerase chain reaction method to identify Stenotrophomonas maltophilia. Memórias do Instituto Oswaldo Cruz, 108, 390-391.

Germiller, J. A., El-Kashlan, H. K., & Shah, U. K. (2005). Chronic Pseudomonas infections of cochlear implants. Otology & neurotology, 26(2), 196-201.

Gurler, Z., Pamuk, S., Yildirim, Y., & Ertas, N. (2015). The microbiological quality of ready-to-eat salads in Turkey: A focus on Salmonella spp. and Listeria monocytogenes. International Journal of Food Microbiology, 196, 79-83.

Gómez‐Aldapa, C. A., Rangel‐Vargas, E., & Castro‐Rosas, J. (2013). Frequency and correlation of some enteric indicator bacteria and Salmonella in ready‐to‐eat raw vegetable salads from Mexican Restaurants. Journal of Food Science, 78(8), M1201-M1207.

Guo, Y., Li, M., Han, H., & Cai, J. (2016). Salmonella enterica serovar Choleraesuis on fresh-cut cucumber slices after reduction treatments. Food Control, 70, 20–25.

Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiology Reviews, 33(4), 689-703.

Holvoet, K., De Keuckelaere, A., Sampers, I., Van Haute, S., Stals, A., & Uyttendaele, A. (2014). Quantitative study of cross-contamination with Escherichia coli, E. coli O157, MS2 phage and murine norovirus in a simulated fresh-cut lettuce wash process. Food Control, 37, 218–227.

Iasur-Kruh, L., Bari, V. K., Abu-Nassar, J., Lidor, O. & Aly, R. (2020) Characterization of an endophytic bacterium (Pseudomonas aeruginosa), originating from tomato (Solanum lycopersicum L.), and its ability to inhabit the parasitic weed Phelipanche aegyptiaca. Plant Signaling and Behavior, 15, 1766292.

IFPA. (2007). Internacional Fresh-Cut Produce Association.

Jang, T. N., Wang, F. D., Wang, L. S., Liu, C. Y., & Liu, I. M. (1992). Xanthomonas maltophilia bacteremia: an analysis of 32 cases. Journal of the Formosan Medical Association= Taiwan yi zhi, 91(12), 1170-1176.

Janssen, P. H. (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Applied and Environment Microbiology, 72, 1719–1728.

Jensen, D. A., Friedrich, L. M., Harris, L. J., Danyluk, M. D., & Schaffner, D. W. (2015). Cross contamination of Escherichia coli O157:H7 between lettuce and wash water during home-scale washing. Food Microbiology, 46, 428–433.

Joseph, J., Cole, G., Head, E., & Ingram, D. (2009). Nutrition, brain aging, and neurodegeneration. Journal of Neuroscience, 29(41), 12795-12801.

Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiology Reviews, 33(4), 689-703.

Kang, I. B., Kim, D. H., Jeong, D., Park, J. H., & Seo, K. H. (2018). Heat resistance of Salmonella Enteritidis under prolonged exposure to acid-salt combined stress and subsequent refrigeration. International Journal of Food Microbiology, 285(1),165–172.

Karumathil D. P., Yin, H-B., Kollanoor-Johny, A., & Venkitanarayanan, K. (2016). Prevalence of multidrug-resistant bacteria on fresh vegetables collected from farmers’ markets in Connecticut. J Food Prot 79:1446–1451.

Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 73:338e344.

Kominos, S. D., Copeland, C. E., Grosiak, B. & Postic, B. (1972) Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Applied Microbiology, 24, 567–570

Koneman, E. W., Allen, S. D., Janda, W. M., Schrechenberger, P. C., & Winn, W. C. (2001). Diagnóstico Microbiológico. (5ª Ed.) Medsi.

Kottwitz, L. B. M., Back, A., Leão, J. A., Alcocer, I., Karan, M., & Oliveira, T. C. R. M. (2008). Contaminação por Salmonella spp. em uma cadeia de produção de ovos de uma integração de postura comercial. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60, 496-498.

Kumar, A., Munder, A., Aravind, R., Eapen, S.J., Tümmler, B. & Raaijmakers, J.M. (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environmental Microbiology, 15, 764–779

LaSala, P. R., Segal, J., Han, F. S., Tarrand, J. J., & Han, X. Y. (2007). First reported infections caused by three newly described genera in the family Xanthomonadaceae. Journal of clinical microbiology, 45(2), 641-644.

Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 770.

León, B. H., Gómez‐Aldapa, C. A., Rangel‐Vargas, E., Vázquez‐Barrios, E., & Castro‐Rosas, J. (2013). Frequency of indicator bacteria, S almonella and diarrhoeagenic E scherichia coli pathotypes on ready‐to‐eat cooked vegetable salads from M exican restaurants. Letters in applied microbiology, 56(6), 414-420.

Li, D., Wong, C. H., Seet, M. F., & Kuan, N. (2019). Isolation, characterization, and inactivation of Stenotrophomonas maltophilia from leafy green vegetables and urban agriculture systems. Front Microbiol 10:2718.

Lin, L., Wang, S. F., Yang, T. Y., Hung, W. C., Chan, M. Y., & Tseng, S. P. (2017). Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Sci Rep 7:15515.

Linu, M. S., Asok, A. K., Thampi, M., Sreekumar, J. & Jisha, M.S. (2019) Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50, 444–457

Lopez-Galvez, F., Gil, M. I., & Allende, A. (2018). Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser Typhimurium survival in baby lettuce. Food Microbiology, 70, 155–161.

Lynch, J. P. (2001). Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest., 119 Suppl 2:S373-84.

Maistro, L. C., Miya, N. T. N., Sant'Ana, A. S., & Pereira, J. L. (2012). Microbiological quality and safety of minimally processed vegetables marketed in Campinas, SP - Brazil, as assessed by traditional and alternative methods. Food Control, 28, 258–264

Mendes, R., Garbeva, P., & Raajimakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663.

Nakayama, T., Há, N. C., Quoc Le P., Kawahara, R., Kumeda, Y., Sumimura, Y., & Yamamoto, Y. (2017). Consumption of edible ice contaminated with Acinetobacter, Pseudomonas, and Stenotrophomonas is a risk factor for fecal colonization with extended-spectrum b-lactamase-producing Escherichia coli in Vietnam. J Water Health. 15:813–822.

National Nosocomial Infections Surveillance. (2004). System report, data summary from January 1992 through June 2004, issued. Am. J. Infect. Control., 2004. 32:470e85.

Nithya, A. & Babu, S. (2017) Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India. BMC Microbiology, 17, 64.

Odumosu, B. T., Ajetunmobi, O., Dada-Adegbola, H., & Odutayo, I. (2016). Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources. Springerplus, 5(1), 1-7.

Okuno, N. T., Freire, I. R., Segundo, R. T. R.S., Silva, C. R., & Marin, V. A. (2018). Polymerase chain reaction assay for detection of Stenotrophomonas maltophilia in cheese samples based on the smeT gene. Curr Microbiol 75:1555–1559.

Oliveira, M. A., Souza, V. M., Bergamini, A. M., & Martinis, E. C. P. (2011). Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control, 22, 1400–1403

Oluyege J O, Oluwaniyi T T,& Ijasan O C (2015) Composition of antibiotic resistant bacteria from irrigated vegetable farmland. J Microbiol Res 5:161–168

Palleroni, N. J., & Bradbury, J. F. (1993). Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International journal of systematic and evolutionary microbiology, 43(3), 606-609.

Perez-Rodriguez, F., Saiz-Abajo, M. J., Garcia-Gimeno, R. M., Moreno, A., Gonzalez, D., & Vitas, A. I. (2014). Quantitative assessment of the Salmonella distribution on freshcut leafy vegetables due to cross-contamination occurred in an industrial process simulated at laboratory scale. International Journal of Food Microbiology, 184,86–91.

Phillippon, A., Arlet, G., & Jacoby, G. A. (2002). Plasmid determined AmpC type β lactamases. Antimicrob Agents Chemother 46:1–11.

Prado, S. D. P. T., Ribeiro, E. G. A., Capuano, D. M., de Aquino, A. L., de Melo Rocha, G., & Bergamini, A. M. M. (2008). Avaliação microbiológica, parasitológica e da rotulagem de hortaliças minimamente processadas comercializadas no município de Ribeirão Preto, SP/Brasil. Revista do Instituto Adolfo Lutz, 67(3), 221-227.

Putnik, P., Kovačević, D. B., Herceg, K., Roohinejad, S., Greiner, R., Bekhit, A. E. D. A., & Levaj, B. (2017). Modelling the shelf-life of minimally-processed fresh-cut apples packaged in a modified atmosphere using food quality parameters. Food Control, 81, 55-64.

Qureshi, A., Mooney, L., Denton, M., & Kerr, K. G. (2005). Stenotrophomonas maltophilia in salad. Emerging infectious diseases, 11(7), 1157.

Radford, R., Brahma, A., Armstrong, M. & Tullo, A.B. (2000) Severe sclerokeratitis due to Pseudomonas aeruginosa in non-contactlens wearers. Eye, 14, 3-7.

Sabry, A. H., Abdullah, D. A., Youssuf, A. G., & Bahig, A. E. (2011). Bacterial load of fresh vegetables and their resistance to the currently used antibiotics in Saudi Arabia. Foodborne Path Dis 8:1011–1018

Santos, T. B. A., Silva, N. D., Junqueira, V. C. A., & Pereira, J. L. (2010). Microrganismos indicadores em frutas e hortaliças minimamente processadas. Brazilian Journal of Food Technology, 13(2), 141-146.

Schroth, M.N., Cho, J.J., Green, S.K., Kominos, S.D. & Publishing, M.S. (2018) Epidemiology of Pseudomonas aeruginosa in agricultural areas. Journal of Medical Microbiology, 67, 1191–1201.

Schuh, V., Schuh, J., Fronza, N., Foralosso, F. B., Verruck, S., Vargas Junior, A., & Silveira, S. M. D. (2019). Evaluation of the microbiological quality of minimally processed vegetables. Food Science and Technology, 40, 290-295.

Suckstorff, I., & Berg, G. (2003). Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J. Appl. Microbiol. 95, 656–663.

Smanioto, T. F., Pirolo, N. J., Simionato, E. M. R. S., & de Arruda, M. C. (2009). Qualidade microbiológica de frutas e hortaliças minimamente processadas. Revista do Instituto Adolfo Lutz, 68(1), 150-154.

Spilker, T., Coenye, T., Vandamme, P., & LiPuma, J. J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of clinical microbiology, 42(5), 2074-2079.

Suckstorff, I., & Berg, G. (2003). Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of Applied Microbiology, 95(4), 656-663.

Talebi, B., Abadi, A., Rizvanov, A. A., Haertlé, T. & Blatt, N. L. (2019). World Health Organization report: current crisis of antibiotic resistance. Bio Nano Science, 9, 778–788.

Tamers, S. L., Agurs-Collins, T., Dodd, K. W., & Nebeling, L. (2009). US and France adult fruit and vegetable consumption patterns: an international comparison. European Journal of Clinical Nutrition, 63(1), 11-17.

Tate, D., Mawer, S. & Newton, A. (2003). Outbreak of Pseudomonas aeruginosa folliculitis associated with a swimming pool inflatable. Epidemiology and Infection, 130, 187–192.

Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: Interactions of enterics with phytobacteria and their implications in produce safety. Trends Microbiol. 19, 121–127.

Tian, J. Q., Bae, Y. M., & Lee, S. Y. (2013). Survival of foodborne pathogens at diferente relative humidities and temperatures and the effect of sanitizers on apples with different surface conditions. Food Microbiology, 35, 21–26.

Todaro, M., Francesca, N., Reale, S., Moschetti, G., Vitale, F., & Settanni, L. (2011). Effect of salting technologies on the chemical and microbiological characteristics of PDO Pecorino Siciliano cheese. Eur Food Res Technol 233:931–940.

Van Dam, R. M., Rimm, E. B., Willett, W. C., Stampfer, M. J., & Hu, F. B. (2002). Dietary patterns and risk for type 2 diabetes mellitus in US men. Annals of internal medicine, 136(3), 201-209.

Victor, M. A., Arpi, M., Bruun, B., Jønsson, V., & Hansen, M. M. (1994). Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scandinavian journal of infectious diseases, 26(2), 163-170.

Victorica, J., Galván, M. (2001). Pseudomonas aeruginosaas an indicator of health risk in water for human consumption. Water science and technology: a journal of the International Association on Water Pollution Research. 43(12), 49–52.

Viswanathan, P. & Kaur, R. (2001). Prevalence and growth of pathogens on salad vegetables, fruits and sprouts. International Journal of Hygiene and Environmental Health, 203, 205–213.

Von Rückert, V., Saldanha, D. A., Pinto, P. S. D. A., Rodrigues, A. C. A., Bevilacqua, P. D., & Pinto, M. S. (2006). Métodos de pesquisa de Salmonella sp durante o abate de frangos. Hig. aliment, 49-54.

Voutilainen, S., Nurmi, T., Mursu, J., & Rissanen, T. H. (2006). Carotenoids and cardiovascular health. The American journal of clinical nutrition, 83(6), 1265-1271.

Wang, Y., Geng, Y., & Hao, B. (2016). Study on the detection method of Rhodopseudomonas palustris with 16S rDNA PCR. Sichuan Animal & Veterinary Sciences. 5, 20–25

Wei, L., Qing-Ping, W. U., Zhang, J. M., Ke-Gang, W. U., Guo, W. P., & Que, S. H. (2015). The pollution survey of Pseudomonas aeruginosa in mineral water and spring water and the analyses of virulence genes and antibiotic resistance of the isolates. Microbiol. China 42, 125–132.

Whitby, P. W., Carter, K. B., Burns, J. L., Royall, J. A., LiPuma, J. J., & Stull, T. L. (2000). Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. Journal of Clinical Microbiology, 38(12), 4305-4309.

WHO - World Health Organization. (2020). Salmonellosis world wide. https://www.who. int/topics/salmonella/es/#/. (Accessed 16 March 2020).

Williamson, K., Pao, S., Dormedy, E., Phillips, T., Nikolich, G., & Li, L. (2018). Microbial evaluation of automated sorting systems in stone fruit packinghouses during peach packing. International Journal of Food Microbiology, 285, 98–102.

Winn, W., Allen, S. D., Janda, W. M., Koneman, E. W., Procop, G., Schrechenberger, P. C., & Woods, G. (2008). Diagnóstico Microbiológico (6ª Ed.) Guanabara Koogan.

Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P., & Edmond, M. B. (2004). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical infectious diseases, 39(3), 309-317.

Zhang, S. M., Hunter, D. J., Rosner, B. A., Giovannucci, E. L., Colditz, G. A., Speizer, F. E., & Willett, W. C. (2000). Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiology Biomarkers & Prevention, 9(5), 477-485.

Zhou, Z., Hu, B., Gao, X., Bao, R., Chen, M., & Li, H. (2016). Sources of sporadic Pseudomonas aeruginosa colonizations/infections in surgical ICUs: Association with contaminated sink trap. Journal of Infection and Chemotherapy, 22(7), 450-455.

Publicado

09/10/2022

Cómo citar

NILO, M. C. dos S. S. .; SILVA, C. R.; MARIN, V. A. . Vegetales mínimamente procesados comercializados en la ciudad de Rio de Janeiro: investigación de Stenotrophomonas maltophilia, Pseudomonas aeruginosa y de Salmonella spp. Research, Society and Development, [S. l.], v. 11, n. 13, p. e367111335534, 2022. DOI: 10.33448/rsd-v11i13.35534. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35534. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud