Evaluación del rendimiento de dos softwares con inteligencia artificial mediante las medidas generadas por el análisis de Mcnamara en radiografías cefalométricas laterales
DOI:
https://doi.org/10.33448/rsd-v11i14.35820Palabras clave:
Inteligência artificial; Ortodoncia; Aprendizaje automático; Radiología; Detección.Resumen
El objetivo de este estudio fue comparar el rendimiento de dos programas informáticos con IA en la telerradiografía cefalométrica lateral, evaluando la reproducibilidad y la fiabilidad de las medidas lineales y angulares del análisis de McNamara. Treinta telerradiografías cefalométricas fueron marcadas mediante el método digital por el examinador en Radiocef (RadioMemory). Posteriormente, la muestra se marcó utilizando la IA del software CEFBOT (RadioMemory) y WebCephTM (AssembleCircle) para evaluar la reproducibilidad y la fiabilidad en relación con el examinador y el software en cuestión. Para calibrar el examinador y evaluar la fiabilidad de las marcas del examinador, del CEFBOT y del WebCephTM, se utilizó el coeficiente de correlación intraclase (CCI), así como la prueba ANOVA y la prueba posterior de Tukey evaluaron la reproducibilidad del software, utilizando los puntos de referencia cefalométricos que componen el análisis de McNamara. El CCI medio del examinador, del CEFBOT y del WebCeph fue de 0,960, 0,940 y 0,954, respectivamente, lo que indica una concordancia casi perfecta. Al comparar el CEFBOT con el examinador, se observaron diferencias estadísticas (p<0,01) sólo en la medición perpendicular A-N. Al comparar WebCephTM con el examinador, se observó una diferencia significativa entre los factores dos a seis y diez. En comparación con el CEFBOT, hubo divergencia en los mismos factores más el factor once. Además, WebCephTM no identificó las medidas Nfa-Nfp y Bfa-Bfp. El CEFBOT mostró reproducibilidad y fiabilidad en la identificación de los puntos de referencia cefalométricos determinados por el análisis de McNamara, pero requirió supervisión humana. WebCeph mostró una concordancia casi perfecta en las marcas, pero seis mediciones fueron diferentes a las del examinador y dos no fueron realizadas por la aplicación.
Citas
Albarakati, S., Kula, K., & Ghoneima (2012). A. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofacial Radiology, 41 (1), 11–17.
Bissoli, C. F., Takeshita, W.M., Castilho, J.C.M., Médici-Filho, E.M (2007). Digitalização de imagens em radiologia: uma nova visão de futuro. Revista Odonto, 30 (15), 34-39.
Borba, A. M.; Haupt, D.; Almeida Romualdo, L. T. De; Silva, A. L. F. Da; Graça Naclério-Homem, M. Da; Miloro, M (2016). How Many Oral and Maxillofacial Surgeons Does It Take to Perform Virtual Orthognathic Surgical Planning? Journal of Oral and Maxillofacial Surgery 74 (9), 1807–1826.
Chen, S.-K., Chen, Y.-J., Yao, C.-C. J., Chang, H.-F (2004). Enhanced Speed and Precision of Measurement in a Computer-Assisted Digital Cephalometric Analysis System. Angle Orthodontist,74 (4), 1-11.
Chen, Y., Stanley, K., & Att, W (2020). Artificial intelligence in dentistry: current applications and future perspectives. Quintessence International, 51 (3), 248–257.
Chien, P., Parks, E., Eraso, F., Hartsfield, J., Roberts, W., et al. (2009). Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofacial Radiology, 38 (5), 262–273.
Debelmas, A., Ketoff, S., Lanciaux, S., Corre, P., Friess, M., K, et al. (2019). Reproducibility assessment of Delaire cephalometric analysis using reconstructions from computed tomography. Journal of Stomatology, Oral and Maxillofacial Surgery, 121 (1), 35–39.
Dreyer, K. J., & Raymond Geis, J (2017). When machines think: Radiology’s next frontier. Radiology, 285 (3), 713–718.
Durão, A. P. R., Morosolli, A., Pittayapat, P., Bolstad, N., Ferreira, A. P., et al. (2015). Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study. Imaging Science in Dentistry, 45 (4), 213–20.
Farooq, M. U., Khan, Mohd. A., Imran, S., Sameera, A., Qureshi, A., et al. (2016). Assessing the Reliability of Digitalized Cephalometric Analysis in Comparison with Manual Cephalometric Analysis. Journal of Clinical and Diagnostic Research, 10 (10), 20–23.
Forsting, M (2017). Machine Learning Will Change Medicine. Journal of Nuclear Medicine, 58 (3), 357–358.
Hung, K., Montalvao, C., Tanaka, R., Kawai, T., Bornstein, M. M (2019). The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiology, 48 (20190107), 1-22, 2019.
Hwang, H.-W., Park, J.-H., Moon, J.-H., Yu, Y., Kim, H., H. et al. (2020). Automated identification of cephalometric landmarks: Part 2- Might it be better than human? The Angle Orthodontist, 90 (1), 69–76.
Khan, A., Javed, M. Q., Bilal, R., Gaikwad, R. N (2020). Retrospective quality assurance audit of Lateral Cephalometric Radiographs at postgraduate teaching hospital. Pakistan Journal of Medical Sciences, 36 (7), 1601-1606.
Khanagar, S. B., Al-Ehaideb, A., Maganur, P. C., Vishwanathaiah, S., Patil, S., et al. (2021). Developments, application, and performance of artificial intelligence in dentistry – A systematic review. Journal of Dental Sciences, 16 (1), 508–522.
Kunz, F., Stellzig-Eisenhauer, A., Zeman, F., Boldt, J (2019). Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, 81 (1), 52–68.
Landis, J. R., Koch, G. G (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–74.
Leonardi, R., Giordano, D., & Maiorana, F (2009). An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. Journal of Biomedicine and Biotechnology, (2009), 1-11.
Livas, C., Delli, K., Spijkervet, F. K. L., Vissink, A., Dijkstra, P. U (2019). Concurrent validity and reliability of cephalometric analysis using smartphone apps and computer software. The Angle Orthodontist, 89 (6), 889–896.
Mahto, R. K., Kafle, D., Giri, A., Luintel, S., Karki, A (2022). Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health, 22 (1), 1-8.
Masse, J.-F (2019). Will the orthodontic profession disappear? Journal of Dental Sleep Medicine, 6 (2), 1-2.
Mcnamara, A (1984). A method of cephalomettic evaluation. American Journal of Orthodontics, 6, 449-469.
Meriç, P., & Naoumova, J (2020). Web-based Fully Automated Cephalometric Analysis: Comparisons between App-aided, Computerized, and Manual Tracings. Turkish Journal of Orthodontics, 33 (3), 142–149.
Moon, J. H., Hwang, H. W., Yu, Y., Kim, M. G., Donatelli, R. E., L. …, S. J (2020). How much deep learning is enough for automatic identification to be reliable? A cephalometric example. Angle Orthodontist, 90 (6), 823–830.
Obermeyer, Z., & Emanuel, E. J (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375 (13), 1216–1219.
Olmez, H., Gorgulu, S., Akin, E., Bengi, A. O., Tekdemir, İ., Ors, F (2011). Measurement accuracy of a computer-assisted three-dimensional analysis and a conventional two-dimensional method. The Angle Orthodontist, 81 (3), 375–382.
Ongkosuwito, E. M., Katsaros, C., Van’t Hof, M. A., Bodegom, J. C., Kuijpers-Jagtman, A. M (2002). The reproducibility of cephalometric measurements: a comparison of analogue and digital methods. European Journal of Orthodontics, 24, 655–665.
Park, J.-H., Hwang, H.-W., Moon, J.-H., Yu, Y., Kim, H., H. et al. (2019). Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. The Angle Orthodontist, 89 (6), 903–909.
Ravikumar, D., N., S., Ramakrishna, M., Sharna, N., Robindro, W (2019). Evaluation of McNamara’s analysis in South Indian (Tamil Nadu) children between 8–12 years of age using lateral cephalograms. Journal of Oral Biology and Craniofacial Research, 9 (2), 193–197.
Santoro, M., Jarjoura, K., & Cangialosi, T. J (2006). Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique. American Journal of Orthodontics and Dentofacial Orthopedics, 129 (3), 345–351.
Shahidi, S., Oshagh, M., Gozin, F., Salehi, P., Danaei, S. M (2013). Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofacial Radiology, 42, (1), p. 1-8.
Silva, T. P., Hughes, M. M., Menezes, L. Dos S., Melo, M. De F. B. De, Takeshita, W. M., Freitas, P. H. L. De (2021). Artificial Intelligence-Based Cephalometric Landmark Annotation and Measurements According to Arnett’s Analysis: Can we trust a bot to do that? Dentomaxillofacial Radiology, 50, (20200548), 1-6.
Subramanian, A. K., Chen, Y., Almalki, A., Sivamurthy, G., Kafle, D (2022). Cephalometric Analysis in Orthodontics Using Artificial Intelligence—A Comprehensive Review. BioMed Research International, 2022, 1–9.
Yu, H. J., Cho, S. R., Kim, M. J., Kim, W. H., Kim, J. W., Choi, J (2020). Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. Journal of Dental Research, 99 (3), 249–256.
Zamrik, O. M., & Iseri, H (2021). The reliability and reproducibility of an Android cephalometric smartphone application in comparison with the conventional method. Angle Orthodontist, 91 (2), 236–242.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Laura Luiza Trindade de Souza; Thaisa Pinheiro Silva; William José e Silva Filho; Bruno Natan Santana Lima; Amanda Caroline Nascimento Meireles; Iris Tamara de Santana Oliveira; Wilton Mitsunari Takeshita
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.