La impresión 3D en la enseñanza de la anatomía de las enfermedades cerebrovasculares

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i15.35837

Palabras clave:

Aneurisma; Bioimpresión; Educación médica; Innovación; Tecnología.

Resumen

La producción de modelos a partir de la impresión 3D es una técnica extremadamente innovadora para ser utilizada en las prácticas docentes. Además de replicar las piezas ya existentes en el laboratorio de anatomía, puede producir otras piezas a partir de casos clínicos registrados a partir de exámenes de imagen, de forma detallada. Así, el presente estudio reporta las aplicaciones técnicas de la impresión tridimensional en la enseñanza de la anatomía de las enfermedades cerebrovasculares. Se trata de un estudio descriptivo, basado en una revisión integrativa de la literatura, utilizando artículos que abordaban el tema, encontrados mediante la búsqueda de estudios con los términos MeSH “impresión tridimensional” y “enfermedades cerebrovasculares”. En las universidades de ciencias de la salud, el uso de modelos tridimensionales ha sido cada vez más común. La construcción de piezas 3D puede ser utilizada como herramienta para un mayor conocimiento del paciente en cuanto a su estado, para mejorar la planificación preoperatoria e incluso la enseñanza de técnicas quirúrgicas de alta complejidad, como en procedimientos terapéuticos de malformaciones arteriovenosas y aneurismas cerebrales. Además del uso de la impresión 3D en el proceso de enseñanza-aprendizaje de residentes y académicos, los modelos se han convertido en una herramienta muy eficaz para aumentar la comprensión de los pacientes sobre las enfermedades cerebrovasculares.

Citas

Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692

Bartikian, M., Ferreira, A., Gonçalves-Ferreira, A., & Neto, L. L. (2019). 3D printing anatomical models of head bones. Surgical and radiologic anatomy: SRA, 41(10), 1205–1209. https://doi.org/10.1007/s00276-018-2148-4

Daou, B. J., Koduri, S., Thompson, B. G., Chaudhary, N., & Pandey, A. S. (2019). Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS neuroscience & therapeutics, 25(10), 1096–1112. https://doi.org/10.1111/cns.13222

Diagbouga, M. R., Morel, S., Bijlenga, P., & Kwak, B. R. (2018). Role of hemodynamics in initiation/growth of intracranial aneurysms. European journal of clinical investigation, 48(9), e12992. https://doi.org/10.1111/eci.12992

Dong, M., Chen, G., Li, J., Qin, K., Ding, X., Peng, C., Zhou, D., & Lin, X. (2018). Three-dimensional brain arteriovenous malformation models for clinical use and resident training. Medicine, 97(3), e9516. https://doi.org/10.1097/MD.0000000000009516

Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328

El Sabbagh, A., Eleid, M. F., Al-Hijji, M., Anavekar, N. S., Holmes, D. R., Nkomo, V. T., Oderich, G. S., Cassivi, S. D., Said, S. M., Rihal, C. S., Matsumoto, J. M., & Foley, T. A. (2018). The Various Applications of 3D Printing in Cardiovascular Diseases. Current cardiology reports, 20(6), 47. https://doi.org/10.1007/s11886-018-0992-9

Garcia, T. R., Macedo, R. M., Vaz, M. H. V., Borges, G. H. I., Zendron, I. M., & Arruda, J. T. (2022). Impressão 3D de peças anatômicas como ferramentas de educação e auxílio na prática clínica. Research, Society and Development, 11(13), e248111335234. https://doi.org/10.33448/rsd-v11i13.35234

Gardin, C., Ferroni, L., Latremouille, C., Chachques, J. C., Mitrečić, D., & Zavan, B. (2020). Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells, 9(3), 742. https://doi.org/10.3390/cells9030742

Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes.

Li, S. J., Wang, F., Chen, W., & Su, Y. (2020). Application of three dimensional (3D) curved multi-planar reconstruction images in 3D printing mold assisted eyebrow arch keyhole microsurgery. Brain and behavior, 10(10), e01785. https://doi.org/10.1002/brb3.1785

Louredo, L. M., Duarte, M. M. S., Araújo, M. C. E., Louredo, J. M., & Arruda, J. T. (2021). Uso de prototipagem rápida ou manufatura aditiva para estudos de casos clínicos e planejamento de técnica cirúrgica utilizando modelos 3D. Research, Society and Development, 10(12), e336101220403. https://doi.org/10.33448/rsd-v10i12.20403

Matozinhos, I. P., Madureira, A. A. C., Silva, G. F., Madeira, G. C. C., Oliveira, I. F. A., & Corrêa C. R. (2017). Impressão 3d: inovações no campo da medicina. Revista Interdisciplinar Ciências Médicas, 1(1), 143-162.

Mendonça, C. R., Souza, K. T. O., Arruda, J. T., Noll, M., & Guimarães, N. N. (2021), Human Anatomy: Teaching–Learning Experience of a Support Teacher and a Student with Low Vision and Blindness. Anatomical sciences education. https://doi.org/10.1002/ase.2058

Muniz, A. L., & Moraes, S. G. (2018). Utilização de modelos 3D como recurso didático no ensino de embriologia do sistema nervoso central. Anais Congresso internacional de educação e tecnologias, CIET:EnPED:2018. Disponível em: https://cietenped.ufscar.br/submissao/index.php/2018/article/view/783

Nagassa, R. G., McMenamin, P. G., Adams, J. W., Quayle, M. R., & Rosenfeld, J. V. (2019). Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D printing in medicine, 5(1), 11. https://doi.org/10.1186/s41205-019-0048-9

Navratil, O., Duris, K., Juran, V., Neuman, E., Svoboda, K., & Smrcka, M. (2017). Middle cerebral artery aneurysms with intracerebral hematoma-the impact of side and volume on final outcome. Acta neurochirurgica, 159(3), 543–547. https://doi.org/10.1007/s00701-016-3070-3

Neifert, S. N., Chapman, E. K., Martini, M. L., Shuman, W. H., Schupper, A. J., Oermann, E. K., Mocco, J., & Macdonald, R. L. (2021). Aneurysmal Subarachnoid Hemorrhage: the Last Decade. Translational stroke research, 12(3), 428–446. https://doi.org/10.1007/s12975-020-00867-0

Rocha, D. P., Silva, K. G. A., Montenegro, I. H. P. de M., & Schwingel, P. A. (2021). Métodos alternativos para o ensino da anatomia humana: revisão sistematizada. Research, Society and Development, 10(16), e370101623641. https://doi.org/10.33448/rsd-v10i16.23641

Salaris, F., & Rosa, A. (2019). Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain research, 1723, 146393. https://doi.org/10.1016/j.brainres.2019.146393

Salbego, C., Oliveira, E. M. D., Silva, M. A. R., & Bugança, P. R. (2015). Percepções Acadêmicas sobre o Ensino e a Aprendizagem em Anatomia Humana. Revista Brasileira de Educação Médica, 39(1), 23-31. https://doi.org/10.1590/1981-52712015v39n1e00732014.

Soares Neto, J., Pinho, F. V. A., Matos, H. L., Lopes, A. R. O., Cerqueira, G. S., & Souza, E. P. (2021). Tecnologias de ensino utilizadas na Educação na pandemia COVID-19: uma revisão integrativa. Research, Society and Development, 10(1), e51710111974. https://doi.org/10.33448/rsd-v10i1.11974

Soares Neto, J., Santos, M. J. C., Cerqueira, G. S., & Souza, E. P. (2020). A Sequência Fedathi e o uso de tecnologias digitais 3D como recursos metodológicos para o ensino de anatomia humana: uma revisão integrativa. Research, Society and Development, 9(10), e3559108141. https://doi.org/10.33448/rsd-v9i10.8141

Soldozy, S., Norat, P., Elsarrag, M., Chatrath, A., Costello, J. S., Sokolowski, J. D., ... & Park, M. S. (2019). The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurgical focus, 47(1), E11.

Sullivan, S., Aguilar-Salinas, P., Santos, R., Beier, A. D., & Hanel, R. A. (2018). Three-dimensional printing and neuroendovascular simulation for the treatment of a pediatric intracranial aneurysm: case report. Journal of neurosurgery. Pediatrics, 22(6), 672–677. https://doi.org/10.3171/2018.6.PEDS17696

Sun, Z., & Lee, S. Y. (2017). A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases. Anatolian journal of cardiology, 17(6), 423–435. https://doi.org/10.14744/AnatolJCardiol.2017.7464

Utiyama, B., Hernandes, C., Senra, T., Gospos, M., Sá, R., Leme, J., Fonseca, J., Drigo, E., Leão, T., Pinto, I., & Andrade, A. (2014). Construção de biomodelos por impressão 3D para uso na prática clínica: experiencia do Instituto Dante Pazzanese de Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf

Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC. Cardiovascular imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001

Wang, J. L., Yuan, Z. G., Qian, G. L., Bao, W. Q., & Jin, G. L. (2018). 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine, 97(24), e11103. https://doi.org/10.1097/MD.0000000000011103

Weinstock, P., Prabhu, S. P., Flynn, K., Orbach, D. B., & Smith, E. (2015). Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. Journal of neurosurgery. Pediatrics, 16(5), 584–589. https://doi.org/10.3171/2015.3.PEDS14677

Wu, A. M., Wang, K., Wang, J. S., Chen, C. H., Yang, X. D., Ni, W. F., & Hu, Y. Z. (2018). The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of Translational Medicine, 6(20), 403. doi: 10.21037/atm.2018.09.59

Ye, Z., Dun, A., Jiang, H., Nie, C., Zhao, S., Wang, T., & Zhai, J. (2020). The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis. BMC medical education, 20(1), 335. https://doi.org/10.1186/s12909-020-02242-x

Yi, X., Ding, C., Xu, H., Huang, T., Kang, D., & Wang, D. (2019). Three-Dimensional Printed Models in Anatomy Education of the Ventricular System: A Randomized Controlled Study. World neurosurgery, 125, e891–e901. https://doi.org/10.1016/j.wneu.2019.01.204

Zhang, J., Cheng, H., Zhou, S., Huang, L., Lv, J., Wang, P., Chen, J., Jin, T., Zheng, G., Ye, H., Wang, X., Meng, B., Lu, D. & Li, Y. (2020). 3D-printed model-guided endoscopic evacuation for basal ganglia hemorrhage. Scientific Reports, 10, 5196. https://doi.org/10.1038/s41598-020-62232-3

Publicado

20/11/2022

Cómo citar

ZENDRON, I. M. .; BORGES, G. H. I. .; VAZ, M. H. V. .; GARCIA, T. R. .; MACEDO, R. M. .; RESPLANDE, C. A. .; TEIXEIRA, L. S. .; TOLINI, G. M. .; OLIVEIRA, A. L. S. .; GOMES, J. A. P. .; BRITO, M. A. M. de .; ARRUDA, J. T. La impresión 3D en la enseñanza de la anatomía de las enfermedades cerebrovasculares. Research, Society and Development, [S. l.], v. 11, n. 15, p. e371111535837, 2022. DOI: 10.33448/rsd-v11i15.35837. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35837. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud