Alternativas económicas para la producción de β-1,3-glucanasa fúngica utilizando sustratos de fácil obtención industrial

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i14.35856

Palabras clave:

Trichoderma harzianum; Almidón; Inmovilización; Zimograma; Succinoglucano.

Resumen

Las β-1,3-glucanasas sintetizadas por hongos filamentosos tienen amplia aplicabilidad en la industria alimentaria, química y farmacéutica. Sin embargo, su obtención puede resultar costosa, especialmente debido a los sustratos utilizados para inducir su síntesis. Así, el objetivo de este trabajo fue producir β-1,3-glucanasa por T. harzianum Rifai a partir de células libres e inmovilizadas en esponjas sintéticas y vegetales, utilizando diferentes sustratos inductores que pudieran brindar un mejor costo-beneficio para la producción industrial de la enzima. La técnica del zimograma de la placa de Petri demostró ser eficiente para la detección de sustratos inductores de β-1,3-glucanasas contra especies de hongos filamentosos. Fue posible inmovilizar T. harzianum en esponja sintética, permitiendo la realización de lotes repetitivos para la producción enzimática. Todos los sustratos probados dieron como resultado la síntesis de β-1,3-glucanasa, propuesto de forma novedosa en este estudio. La biomasa fúngica resultó ser el mejor sustrato inductor en condiciones de células libres e inmovilizadas, con una producción de β-1,3-glucanasas de 0,73 U y 0,80 U de β-1,3-glucanasas. Los sustratos de almidón de maíz y yuca se mostraron promisorios en la producción de β-1,3-glucanasa y mantuvieron la producción hasta el cuarto lote evaluado, con valores de 0.51 U y 0.46 U de β-1,3-glucanasas, respectivamente. Los resultados obtenidos en este estudio demostraron que el zimograma es un método práctico para el cribado de sustratos inductores del hongo T. harzianum. El almidón de maíz y mandioca son fuentes accesibles y de bajo costo para la síntesis de β-1,3-glucanasa en lotes repetitivos, incluido el uso de células inmovilizadas y libres.

Citas

Bakhtiyari, M., Moosavi-Nasab, M., & Askari, H. (2015). Optimization of succinoglycan hydrocolloid production by Agrobacterium radiobacter grown in sugar beet molasses and investigation of its physicochemical characteristics. Food Hydrocolloids, 45, 18-29. doi.org/10.1016/j.foodhyd.2014.11.002

Barsanti, L., Vismara, R., Passarelli, V., & Gualtieri, P. (2001). Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. Journal of applied phycology, 13 (1), 59-65. doi.org/10.1023/A:1008105416065

Bauermeister, A., Amador, I. R., Pretti, C. P., Giese, E. C., & Oliveira, A. L. M. (2015). β-(1→3) Glucanolytic yeasts from Brazilian grape microbiota: production and characterization of β-Glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal mycelium. Journal of agricultural and food chemistry, 63 (1), 269-278. doi.org/10.1021/jf504333h

Bauermeister, A., Rezende, M. I., Giese, E. C., Dekker, R. F. H., & Barbosa, A. M. (2010). β-1,3-Glucanases Fúngicas: produção e aplicações biotecnológicas. Semina: Ciências Exatas e Tecnológicas, 31(2), 75-86. https://www.researchgate.net/

Da Silva, A. L., & Castañeda-Ayarza, J. A. (2021). Macro-environment analysis of the corn ethanol fuel development in Brazil. Renewable and Sustainable Energy Reviews, 135, 110387. doi.org/10.1016/j.rser.2020.110387

De Souza, M. P., Hoeltz, M., Muller, M. V. G., Gressler, P. D., Bjerk, T. R., de Souza Schneider, R. D. C., & Corbellini, V. A. (2019). Screening of fungal strains with potentiality to hydrolyze microalgal biomass by Fourier Transform Infrared Spectroscopy (FTIR). Acta Scientiarum. Technology, 41, e39693-e39693. doi.org/10.4025/actascitechnol.v41i1.39693

Di-Francesco, A., Ugolini, L., Lazzeri, L., & Maria, M. (2015). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, 8-14. doi.org/10.1016/j.biocontrol.2014.10.004

EL-Katatny, M. H., Somitsch, W., Robra, K-H., El-Katatny, M. S., & Gübitz, G. M. (2000). Production of chitinase and β-1,3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technology and Biotechnology, 38 (3), 173-180. https://www.cabdirect.org/

Gerhardson, B. (2002). Biological substitutes for pesticides. Trends in biotechnology, 20 (8), 338-343. doi.org/10.1016/S0167-7799(02)02021-8

Giese, E. C., Covizzi, L. G., Borsato, D., Dekker, R. F. H., Da Silva, M. D., & Barbosa, A. M. (2005). Botryosphaeran, a new substrate for the production of β-1,3-glucanases by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process biochemistry, 40 (12), 3783-3788. doi.org/10.1016/j.procbio.2005.04.004

Giese, E. C., Dekker, R. F. H., Scarminio, I. S., Barbosa, A. M., & Da Silva, R. (2011). Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochemical Engineering Journal, 53 (2), 239-243. doi.org/10.1016/j.bej.2010.10.013

González-Pombo, P. Fariña, L., Carrau, F., & Batista-Viera, F. (2011). A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochemistry, 46 (1), 385-389. doi.org/10.1016/j.procbio.2010.07.016

Haapala, R., Linko, S., Parkkinen, E., & Suominen, P. (1994). Production of endo-1,4-β-glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam. Biotechnology techniques, 8 (6), 401-406. doi.org/10.1007/BF00154311

Hideno, A., Ogbonna, J. C., Aoyagi, H., & Tanaka, H. (2007). Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase. Journal of bioscience and bioengineering, 103 (4), 311-317. doi.org/10.1263/jbb.103.311

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87 (1), 4-10. doi.org/10.1094/PDIS.2003.87.1.4

Lopes, M. R., Klein, M. N., Ferraz, L. P., Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: a novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological research, 175, 93-99. doi.org/10.1016/j.micres.2015.04.003

Marcello, C. M., Steindorff, A. S., Silva, S. P., Silva, R. N., Bataus, L., & Ulhoa, C. J. (2010). Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiological Research, 165 (1), 75-81. doi.org/10.1016/j.micres.2008.08.002

Masih, E. I., & Paul, B., (2002). Secretion of β-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea Causing grey mold disease of the grapevine. Current microbiology, 44 (6), 391-395. doi.org/10.1007/s00284-001-0011-y

Menezes, J. P., Lupatini, M., Antoniolli, Z. I., Blume, E., Junges, E., & Manzoni, C. G. (2010). Variabilidade genética na região its do rDNA de isolados de Trichoderma spp. (Biocontrolador) e Fusarium oxysporum f. sp. chrysanthemi. Ciência e Agrotecnologia, v. 34, 132-139. doi.org/10.1590/S1413-70542010000100017

Musoni, M., Destain, J., Thonart, P., Bahama, J-B., & Delvigne F. (2015). Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems. Biotechnol. Agron. Soc. Environ, 19 (4), 430-442. https://popups.uliege.be/

Nelson, N. (1994). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of biological chemistry, 153 (2), 375-380. http://www.jbc.org/

Pazzetto, R., Delina, T. C. O., Fenelon, V. C., & Matioli, G. (2011). Cyclodextrin production by Bacillus firmus strain 37 cells immobilized on loofa sponge. Process biochemistry, 46 (1), 46-51. doi.org/10.1016/j.procbio.2010.07.008

Pitson, S. M., Seviour, R. J., & Mcdougall, B. M. (1993). Noncellulolytic fungal β-glucanases: their physiology and regulation. Enzyme and microbial technology, 15 (3), 178-192. doi.org/10.1016/0141-0229(93)90136-P

Ramada, M. H. S., Steindorff, A. S., Jr Bloch, C., & Ulhoa, C. J. (2016). Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics, 16 (3), 477-490. doi.org/10.1002/pmic.201400546

Rao, K. L. N., Raju, K. S., & Ravisankar, H. (2016). Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Brazilian journal of microbiology, 47, 25-32. doi.org/10.1016/j.bjm.2015.11.007

Rezende, M. I., Barbosa, A. M., Vasconcelos, A. F. D., & Endo, A. S. (2002). Xylanase production by Trichoderma harzianum Rifai by solid state fermentation on sugarcane bagasse. Brazilian Journal of Microbiology, 33, 67-72. doi.org/10.1590/S1517-83822002000100014

Ruiz, S. P., Martinez, C. O., Noce, A. S., Sampaio, A. R., Baesso, M. L., & Matioli, G. (2015). Biosynthesis of succinoglycan by Agrobacterium radiobacter NBRC 12665 immobilized on loofa sponge and cultivated in sugar cane molasses. Structural and rheological characterization of biopolymer. Journal of Molecular Catalysis B: Enzymatic, 122, 15-28. doi.org/10.1016/j.molcatb.2015.08.016

Santos, V. A. Q., & Cruz, C. H. G. (2016). Ethanol and Levan production by sequential bath using Zymomonas mobilis immobilized on alginate and chitosan beads. Acta Scientiarum. Technology, 38(3), 263-271. doi.org/10.4025/actascitechnol.v38i3.27646

Sharma, K., Mishra, A. K., & Misra, R. S. (2009). Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. Journal of Phytopathology, 157 (1), 51-56. doi.org/10.1111/j.1439-0434.2008.01451.x

Stubbs, H. J., Brasch, D. J., Emerson, G. W., & Sullivan, P. A. (1999). Hydrolase and transferase activities of the β‐1,3‐exoglucanase of Candida albicans. European journal of biochemistry, 263 (3), 889-895. doi.org/10.1046/j.1432-1327.1999.00581.x

Syed, S., Riyaz-Ul-Hassan, S., & Johri, S. (2013). A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. American Journal of Microbiological Research, 1 (4), 84-91. doi.org/ 10.12691/ajmr-1-4-4

Usoltseva, R. V., Belik, A. A., Kusaykin, M., Malyarenko, O. S., Zvyagintseva, T. N., & Ermakova, S., (2020). Laminarans and 1, 3-β-D-glucanases. International Journal of Biological Macromolecules, 163, 1010-1025. doi.org/10.1016/j.ijbiomac.2020.07.034

Vázquez-Garcidueñas, S., Leal-Morales, C. A., & Herrera-Estrella, A. (1998). Analysis of the β-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Applied and environmental microbiology, 64 (4), 1442-1446. doi.org/10.1128/AEM.64.4.1442-1446.1998

Vero, S., Garmendia, G., González, M. B., Garat M. F., & Wisniewski, M. (2009). Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Science and Technology, 19 (10), 1033-1049. doi.org/10.1080/09583150903277738

Vilpoux, O. (2011). Desempenho dos arranjos institucionais e minimização dos custos de transação: transações entre produtores e fecularias de mandioca. Revista de Economia e Sociologia Rural, 49, 271-294. doi.org/10.1590/S0103-20032011000200001

Vogel, H. J. (1956). A convenient growth medium for Neurospora crassa. Microbial genetics bulletin. 13, 42-43.

Yu, B., Zhang, X., Sun, W., Xi, X., Zhao, N., Huang, Z., Ying, Z., Liu, L., Liu, D., Niu, H., Wu, J., Zhuang, W., Zhu, C., Chen, Y., & Ying, H. (2018). Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. Journal of biotechnology, 276, 1-9. doi.org/10.1016/j.jbiotec.2018.03.015

Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54 (3), 172-180. doi.org/10.1016/j.biocontrol.2010.05.003

Descargas

Publicado

24/10/2022

Cómo citar

ZANIBONI, H. M. de S.; SILVA, R. M.; NASCIMENTO, M. G. .; MIYOSHI, J. H. .; BARBOSA, A. de M. .; MATIOLI, G. Alternativas económicas para la producción de β-1,3-glucanasa fúngica utilizando sustratos de fácil obtención industrial. Research, Society and Development, [S. l.], v. 11, n. 14, p. e198111435856, 2022. DOI: 10.33448/rsd-v11i14.35856. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35856. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas