Caracterización y compuestos bioactivos del aceite y harinas de semilla de uva orgánicas de Burdeos (Vitis labrusca L.)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i14.35888

Palabras clave:

Vitaminas B; Vitamina E; Flavonoides; Ácidos grasos; HPLC.

Resumen

La variedad de uva bordelesa es la más utilizada en la elaboración de zumos tintos. El objetivo de este trabajo fue evaluar carotenoides, flavonoides, vitaminas C, E y complejo B, ácidos grasos totales, fitatos, taninos, capacidad antioxidante, compuestos fenólicos totales y composición proximal en uva bordelesa entera (W) y desgrasada (D), y en harinas y aceite (O). Los ácidos grasos totales se evaluaron por cromatografía de gases (detector de ionización de llama). Los análisis del complejo de vitamina E y B se realizaron mediante cromatografía líquida de alta resolución (HPLC) (detección de fluorescencia). La vitamina C, los carotenoides y los flavonoides se evaluaron por HPLC (detección de matriz de diodo). La composición de ácidos grasos mostró el patrón: C18:2>C18:1>C16:0>C18:0. W y D tenían concentraciones más altas de vitaminas B que O. W tenía la concentración más alta de luteína y carotenoides totales, seguido por O y D. O tenía mayor vitamina E y niveles más bajos de flavonoides y capacidad antioxidante. Los diferentes productos de uva afectaron la ocurrencia y concentración de compuestos bioactivos.

Citas

Addo, P. W. et al. (2018). Antinutrient contents of watermelon seeds. MOJ Food Processing and Technology, 6 (2), 237-239.

Alara, O. R. et al. (2021). Extraction of phenolic compounds: a review. Current Research in Food Science, 2, 200-214.

Alves-Rodrigues, A. & Sha, A. (2004). The science behind lutein. Toxicology Letters, 150, 57-83.

AOAC. Association of Official Analytical Chemists. (2012). Official methods of analysis of the AOAC, Washington, D.C.

Araújo, J. M. (2008). Química de Alimentos: Teoria e Prática. Editora UFV.

Arella, F. et al. (1996). Liquid chromatographic determination of vitamins B1 and B2 in foods. A collaborative study. Food Chemistry, 56(1), 81-86.

Arola-Arnal, A. et al. (2013). Distribution of grape seed flavanols and their metabolites in pregnant rats and their fetuses. Molecular Nutrition & Food Research, 57(10), 1741-1752.

Benzie, I. & Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.

Bergaentzlé, M. et al. (1995). Determination of vitamin B6 in foods by HPLC—a collaborative study. Food Chemistry, 52(1), 81-86.

Bertrand, M. & Ozcan, M. M (2011). Oil yields, fatty acids compositions and tocopherol contents of grape seed oils from Turkey. Carpathian Journal of Food Science and Technology, 3, 63-71.

Bloor, S. J. (2001). Overview of methods for analysis and identification of flavonoids, in: Lester, P. (Ed.), Methods in Enzymology. Academic Press.

Bragagnolo, N. (1997). Fatores que influenciam o nível de colesterol, lipídeos totais e composição de ácidos graxos em camarão e carne. 123f. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos, Campinas, SP.

Brow, L. et al. (1999). A prospective study of carotenoid intake and risk of cataract extraction in US men. The American Journal of Clinical Nutrition, 70, 517-524.

Campos, F. M. et al. (2009). Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables. Química Nova, 32, 87-91.

Clarke, M. W. et al. (2008). Vitamin E in human health and disease. Critical Reviews in Clinical Laboratory Sciences, 45(5), 417-450.

Crew, C. et al. (2006). Quantitation of the main constituents of some authentic grape seed oils of different origins. Journal of Agricultural and Food Chemistry, 54, 6261-6264.

Delgadillo, J & Ayala, G. (2009). Efectos de la deficiencia de riboflavina sobre el desarrollo del tejido dentoalveolar, en ratas. Anales de la Facultad de Medicina. UNMSM. Facultad de Medicina, 19-27.

Deng, Q. et al. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 44(9), 2712-2720.

Dykes, L. et al. (2009). Flavonoid composition of red sorghum genotypes. Food Chemistry, 116, 313-317.

Egbuonu A. C. C. (2015). Comparative assessment of some mineral, amino acid and vitamin compositions of watermelon (Citrullus lanatus) rind and seed. Asian Journal of Biochemistry, 10(5), 230-236.

Ellis, R. & Morris, E. R. (1986). Appropriate resin selection for rapid phytate analysis by ion-exchange chromatography. Cereal Chemistry, 63(1), 58-59.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Filho W, D. et al. (2001). Flavonóides antioxidantes de plantas medicinais e alimentos: importância e perspectivas terapêuticas. In: Plantas medicinais sob a ótica da química medicinal moderna. Chapecó: Universidade do Oeste de Santa Catarina, 317-334.

Garavaglia, J. et al. (2016). Grape seed oil compounds: Biological and chemical actions for health. Nutrition and Metabolic Insights, 9, S32910.

Gauer, P. O. et al. (2018). Evaluation of oil and flour for human nutrition obtained from conventional and organic grape seed Bordô from a winery in the South of Brazil. Grasas y Aceites, 69(1), e237-e237.

Ghafoor, K. et al. (2020). Influence of grape variety on bioactive compounds, antioxidant activity, and phenolic compounds of some grape seeds grown in Turkey. Journal of Food Processing and Preservation, 44(12), e14980.

Grundy, S.M. & Denke, M.A. (1990). Dietary influences on serum lipids and lipoproteins. Journal of Lipid Research, 31, 1149.

Hartman, L. & Lago, R.C.A. (1973). Rapid preparation of fatty acid methyl ester from lipids. London Laboratory Practice, 22, 475-476.

Institute of Medicine. (2011). Dietary reference intakes: a risk assessment model for establishing upper intake levels for nutrients. Washington (DC): National Academy Press.

Is, Y. & Woodside, J. V. (2001) Antioxidant in health and disease. Journal of Clinical Pathology, 54(3), 176-186.

Karnopp, A. R. et al. (2015). Effects of whole-wheat flour and bordeaux grape pomace (Vitis labrusca L.) on the sensory, physicochemical and functional properties of cookies. Food Science and Technology, 35, 750-756.

Krinsky, N. I. & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459-516.

Latta, M. & Eskin, M. A. (1980). Simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 28(6), 1313-1315.

Lira, G. M. et al. (2005). Composição centesimal, valor calórico, teor de colesterol e perfil de ácidos graxos da carne de búfalo (Bubalis bubalis) da cidade de São Luiz do Quitunde-AL. Revista do Instituto Adolfo Lutz (Impresso), 64(1), 31-38.

Lutterodt, H. et al. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 128(2), 391-399.

Maicas, S. & Mateo, J. J. (2020). Sustainability of Wine Production. Sustainability, 12(2), 1-10.

Maihara, V. A. et al. (2006). Avaliação nutricional de dietas de trabalhadores em relação a proteínas, lipídeos, carboidratos, fibras alimentares e vitaminas. Food Science and Technology, 26, 672-677.

Martin, M. E. et al. (2020). Grape (Vitis vinifera L.) seed oil: a functional food from the winemaking industry. Foods, 9(10), 1360.

Monteiro, G. C. et al. (2021). Bioactive compounds and antioxidant capacity of grape pomace flours. LWT, 135, 110053.

Monteiro, E. M. (1998). Influência do cruzamento ile de France x corriedale (F1) nos parâmetros de qualidade da carne de cordeiro. Tese (doutorado). Universidade de São Paulo, São Paulo.

Muhammad, S. (2019). Physico-chemical, fatty acids and amino acids composition of the seeds of african grapes (Lannea microcarpa) fruits. Journal of Applied Sciences, 19(2), 82-87.

Munyaka, A. W. et al. (2010). Thermal stability of L-ascorbic acid and ascorbic acid osidase in broccoli (Brassica oleracea var. italica). Journal of Food Science, 75(4), 336-340.

Ndaw, S. et al. (2000). Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B6 in foodstuffs. Food Chemistry, 71(1), 129-138.

Nicolescu, C. M. et al. (2022). Romanian organic and conventional red grapes vineyards as potential sources of high value-added products, in a circular economy approach. Grapes and Wine, 107.

Ozvural, E. B. & Vural, H. (2011). Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Science, 88(1), 179-183.

Panfili, G. at al. (2004). Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. Journal of Agricultural and Food Chemistry, 52(21), 6373-6377.

Peighambardoust, S. H. et al. (2014). Physicochemical, nutritional, shelf life and sensory properties of Iranian Sangak bread fortified with grape seed powder. Journal of Food Processing and Technology, 5(10).

Peñuela-Sierra, L. M. et al. (2015). Ácidos graxos poliinsaturados e ácido linoléico conjugado na carne suína. Benefícios para a saúde humana: Revisão. PUBVET, 9, 287-347.

Pereira, R. J. & Das Graças Cardoso, M. (2012). Metabólitos secundários vegetais e benefícios antioxidantes. Journal of Biotechnology and Biodiversity, 3(4).

Phillippy, B. Q. et al. (2003). Ion chromatography of phytate in roots and tubers. Journal of Agricultural and Food Chemistry, 51(2), 350-353.

Pinheiro-Sant’Ana, H. M. et al. (2011). Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. Journal of Chromatography, 1218(47), 8496-8502.

Rodriguez-Amaya, D. B et al. (1976). Carotenoid pigment changes in ripening Momordica charantia fruits. Annals of Botany, 40(3), 615-624.

Ross, C. F. et al. (2011). Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. Journal of Food Science, 76(6), C884-C890.

Rubert, A. et al. (2017). Vitaminas do complexo B: uma breve revisão. Revista Jovens Pesquisadores, 7(1), 30-45.

Schultz, H. R (2016). Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11(1), 181-200.

Scola, G. et al. (2010). Flavan-3-ol compounds from wine wastes with in vitro and in vivo antioxidant activity. Nutrients, 2(10), 1048-1059.

Shils, M. E. et al. (2006). Modern nutrition in health and disease. Lippincott Williams & Wilkins. Philadelphia.

Shinagawa, F. B. et al. (2015). Grape seed oil: a potential functional food? Food Science and Technology, 35, 399-406.

Singleton, V. L. et al. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.

Sousa, E. C. et al. (2014). Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology, 34, 135-142.

Spector, A. A. (1999). Essentiality of fatty acids. Lipids, 34, S1–S3.

Stringheta, P. C. et al. (2009). Luteína: propriedades antioxidantes e benefícios à saúde. Alimentos e Nutrição Araraquara, 17(2), 229-238.

Strutzel, E. et al. (2007). Análise dos fatores de risco para o envelhecimento da pele: aspectos gerais e nutricionais. Revista Brasileira de Nutrição Clínica, 22(2), 139-145.

Vieira, A. C. R. (2020). Atividade antioxidante da vitamina C: aplicações na indústria farmacêutica e de alimentos e formas de evitar a oxidação mantendo sua estabilidade. 49 f. Trabalho de Conclusão de Curso (Graduação) – Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia.

Wen, X. et al. (2016) Characterisation of seed oils from different grape cultivars grown in China. Journal of Food Science and Technology, 53(7), 3129-3136.

Yang, L. et al. (2012). Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutrition and Cancer, 64(3), 419-427.

Descargas

Publicado

20/10/2022

Cómo citar

CAETANO, S. S. P.; DIAS, M. de M. e; SOBREIRA, A. C. F.; BARROSO, A. B.; PINHEIRO-SANT’ANA, H. M.; LUCIA, C. M. D. .; MARTINO, H. S. D.; ANUNCIAÇÃO, P. C.; PELUZIO, M. do C. G. Caracterización y compuestos bioactivos del aceite y harinas de semilla de uva orgánicas de Burdeos (Vitis labrusca L.). Research, Society and Development, [S. l.], v. 11, n. 14, p. e55111435888, 2022. DOI: 10.33448/rsd-v11i14.35888. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35888. Acesso em: 21 nov. 2024.

Número

Sección

Ciencias de la salud