Síntesis verde de nanopartículas de Pd soportadas en Fe3O4@ZnO para reacciones de oxidación e hidrogenación en sistemas líquidos
DOI:
https://doi.org/10.33448/rsd-v11i14.36004Palabras clave:
Nanomateriales; Separación magnética; Biosíntesis.Resumen
En este trabajo se sintetizaron nanopartículas de Pd inmovilizadas sobre un soporte sólido híbrido compuesto por Fe3O4 recubierto con una capa de ZnO mediante un método verde que utiliza agua, un sustrato biológico de una planta local (Rhamnidium elaeocarpum) y sales metálicas de Fe3+ y Zn2+. 1H-NMR y 13C-NM revelaron β-sitosterol como componente principal del sustrato biológico. El soporte catalítico que contiene nanopartículas de Pd se aplicó en tres modelos de sistemas catalíticos sólido-líquido, a saber: oxidación de alcoholes, reducción de nitrocompuestos e hidrogenación de olefinas. Para la oxidación del alcohol, se usó alcohol bencílico como sustrato en una condición libre de solventes, con alta selectividad hacia el benzaldehído, y una sola muestra del catalizador se pudo reciclar hasta 11 veces antes de que se pudiera detectar cualquier pérdida de actividad. Se logró un TOF (frecuencia de rotación) de 13 686 h-1 para la oxidación del sustrato con una tasa de rendimiento promedio del 45,4 % para la formación de benzaldehído y una conversión promedio del sustrato del 81,6 % después de 6 ciclos catalíticos. Para los experimentos de hidrogenación utilizando ciclohexeno y 4-nitrofenol como sustratos modelo, la conversión fue del 96 % para 4-aminofenol y ciclohexano, respectivamente, después de 30 minutos de reacción. Además, una sola muestra del catalizador podría reciclarse hasta 17 veces para la reducción de 4-nitrofenol y 21 veces para la hidrogenación de ciclohexeno. El reciclaje catalítico de todas las reacciones estudiadas se realizó de forma sencilla debido a la propiedad superparamagnética del material, y el aislamiento del catalizador después de cada lote se pudo realizar rápidamente utilizando un imán de Nd. Estos resultados sugieren que se puede fabricar un sistema catalítico altamente activo y estable basado en nanopartículas de Pd soportadas en un sólido multifuncional utilizando biomasa verde barata en condiciones de síntesis operativamente simples.
Citas
Al-Nuairi, A. G., Mosa, K. A., Mohammad, M. G., El-Keblawy, A., Soliman, S., & Alawadhi, H. (2020). Biosynthesis, Characterization, and Evaluation of the Cytotoxic Effects of Biologically Synthesized Silver Nanoparticles from Cyperus conglomeratus Root Extracts on Breast Cancer Cell Line MCF-7. Biological Trace Element Research, 194(2), 560–569. https://doi.org/10.1007/s12011-019-01791-7
Ammar, S. H., Abdulnabi, W. A., & kader, H. D. A. (2020). Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ZnO/PMOs). Environmental Nanotechnology, Monitoring & Management, 13, 100289. https://doi.org/https://doi.org/10.1016/j.enmm.2020.100289
Ayaz Ahmed, K. B., Subramaniam, S., Veerappan, G., Hari, N., Sivasubramanian, A., & Veerappan, A. (2014). β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Advances, 4(103), 59130–59136. https://doi.org/10.1039/C4RA10626A
Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., & Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133–146. https://doi.org/https://doi.org/10.1016/j.jcat.2016.03.017
Bahtiar, S., Taufiq, A., Utomo, J., Hidayat, N., & Sunaryono, S. (2019). Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conference Series: Materials Science and Engineering, 515, 12076. https://doi.org/10.1088/1757-899X/515/1/012076
Bankar, D. B., Hawaldar, R. R., Arbuj, S. S., Shinde, S. T., Gadde, J. R., Rakshe, D. S., Amalnerkar, D. P., & Kanade, K. G. (2020). Palladium loaded on ZnO nanoparticles: Synthesis, characterization and application as heterogeneous catalyst for Suzuki–Miyaura cross-coupling reactions under ambient and ligand-free conditions. Materials Chemistry and Physics, 243, 122561. https://doi.org/https://doi.org/10.1016/j.matchemphys.2019.122561
Barrios, C. E., Bosco, M. V, Baltanás, M. A., & Bonivardi, A. L. (2015). Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Applied Catalysis B: Environmental, 179, 262–275. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.05.030
Batista, F. R. M., da S. Melo, I. E. M., dos Santos Pereira, L., Lima, A. A. G., Bashal, A. H., Costa, J. C. S., Magalhães, J. L., Lima, F. C. A., de Moura, C., Garcia, M. A. S., & de Moura, E. M. (2020). Screening of the Au:Pt Atomic Ratio Supported in SrCO3: Effects on the Performance of the Solvent-Free Oxidation of Benzyl Alcohol. Journal of the Brazilian Chemical Society, 31, 488. https://doi.org/https://doi.org/10.21577/0103-5053.20190207
Cable, R. E., & Schaak, R. E. (2007). Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors. Chemistry of Materials, 19(16), 4098–4104. https://doi.org/10.1021/cm071214j
Camargo, P., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research-Ibero-American Journal of Materials - MATER RES-IBERO-AM J MATER, 12. https://doi.org/10.1590/S1516-14392009000100002
Cao, P., Yang, Z., Navale, S. T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F. J., & Zhu, D. (2019). Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sensors and Actuators B: Chemical, 298, 126850. https://doi.org/https://doi.org/10.1016/j.snb.2019.126850
Chuc, L. T. N., Chen, C.-S., Lo, W.-S., Shen, P.-C., Hsuan, Y.-C., Tsai, H.-H. G., Shieh, F.-K., & Hou, D.-R. (2017). Long-Range Olefin Isomerization Catalyzed by Palladium(0) Nanoparticles. ACS Omega, 2(2), 698–711. https://doi.org/10.1021/acsomega.6b00509
Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., & Muniz-Miranda, M. (2011). Production of Palladium Nanoparticles by Pulsed Laser Ablation in Water and Their Characterization. The Journal of Physical Chemistry C, 115(12), 5073–5083. https://doi.org/10.1021/jp109281q
da Silva, F. P., Fiorio, J. L., & Rossi, L. M. (2017). Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2(9), 6014–6022. https://doi.org/10.1021/acsomega.7b00836
da Silva, R. A., Jacinto, M. J., Silva, V. C., & Cabana, D. C. (2018). Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. Journal of Sol-Gel Science and Technology, 86(1), 94–103. https://doi.org/10.1007/s10971-018-4607-0
Gaikwad, D. S., Undale, K. A., Kalel, R. A., & Patil, D. B. (2019). Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. Journal of the Iranian Chemical Society, 16(10), 2135–2141. https://doi.org/10.1007/s13738-019-01682-7
Galvanin, F., Sankar, M., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J., & Gavriilidis, A. (2018). On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal, 342, 196–210. https://doi.org/https://doi.org/10.1016/j.cej.2017.11.165
Guo, Y., Gao, Y., Li, X., Zhuang, G., Wang, K., Zheng, Y., Sun, D., Huang, J., & Li, Q. (2019). Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 362, 41–52. https://doi.org/https://doi.org/10.1016/j.cej.2019.01.012
Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J., & Walke, P. S. (2019). Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sensors and Actuators B: Chemical, 293, 83–92. https://doi.org/https://doi.org/10.1016/j.snb.2019.04.086
Hu, Z., Zhou, G., Xu, L., Yang, J., Zhang, B., & Xiang, X. (2019). Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 471, 852–861. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.067
Ismaeel, S., Jaber, H., & Zayed, R. (2020). ISOLATION OF β-SITOSTEROL FROM TAMARIX APHYLLA OF IRAQ. Biochem. Cell. Arch. 20(2), 6497–6502. https://doi.org/https://connectjournals.com/03896.2020.20.6497
Jacinto, M. J., Souto, R. S., Silva, V. C. P., Prescilio, I. C., Kauffmann, A. C., Soares, M. A., de Souza, J. R., Bakuzis, A. F., & Fontana, L. C. (2021). Biosynthesis of Cube-Shaped Fe3O4 Nanoparticles for Removal of Dyes Using Fenton Process. Water, Air, & Soil Pollution, 232(7), 270. https://doi.org/10.1007/s11270-021-05233-w
Khataee, A. R., Karimi, A., Soltani, R. D. C., Safarpour, M., Hanifehpour, Y., & Joo, S. W. (2014). Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Applied Catalysis A: General, 488, 160–170. https://doi.org/https://doi.org/10.1016/j.apcata.2014.09.039
Kibis, L. S., Titkov, A. I., Stadnichenko, A. I., Koscheev, S. V, & Boronin, A. I. (2009). X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Applied Surface Science, 255(22), 9248–9254. https://doi.org/https://doi.org/10.1016/j.apsusc.2009.07.011
Kuai, L., Chen, Z., Liu, S., Kan, E., Yu, N., Ren, Y., Fang, C., Li, X., Li, Y., & Geng, B. (2020). Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 11(1), 48. https://doi.org/10.1038/s41467-019-13941-5
Li, X., Feng, J., Sun, J., Wang, Z., & Zhao, W. (2019). Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. Nanoscale Research Letters, 14(1), 394. https://doi.org/10.1186/s11671-019-3211-8
Li, X., Zeng, Z., Hu, B., Qian, L., & Hong, X. (2017). Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. ChemCatChem, 9(6), 924–928. https://doi.org/https://doi.org/10.1002/cctc.201601119
Liqiang, J., Baiqi, W., Baifu, X., Shudan, L., Keying, S., Weimin, C., & Honggang, F. (2004). Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. Journal of Solid State Chemistry, 177(11), 4221–4227. https://doi.org/https://doi.org/10.1016/j.jssc.2004.08.016
López-Salazar, H., Camacho-Díaz, B. H., Ávila-Reyes, S. V, Pérez-García, M. D., González- Cortazar, M., Arenas Ocampo, M. L., & Jiménez-Aparicio, A. R. (2019). Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. In Molecules (Vol. 24, Issue 21). https://doi.org/10.3390/molecules24213926
Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., & Ma, Y. (2019). Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. Journal of Materials Science, 54(1), 323–334. https://doi.org/10.1007/s10853-018-2868-1
Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037–3058. https://doi.org/10.1021/cr0200116
Miceli, M., Frontera, P., Macario, A., & Malara, A. (2021). Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11(5). https://doi.org/https://doi.org/10.3390/catal11050591
Miedziak, P. J., He, Q., Edwards, J. K., Taylor, S. H., Knight, D. W., Tarbit, B., Kiely, C. J., & Hutchings, G. J. (2011). Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 163(1), 47–54. https://doi.org/https://doi.org/10.1016/j.cattod.2010.02.051
Moon, J., Park, J.-A., Lee, S.-J., Zyung, T., & Kim, I.-D. (2010). Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors and Actuators B: Chemical, 149(1), 301–305. https://doi.org/https://doi.org/10.1016/j.snb.2010.06.033
Munvera, A., Nyemb, J. N., Alfred Ngenge, T., Mafo, M. A. F., Nuzhat, S., & Nkengfack, A. E. (2021). First report of isolation of antibacterial ceramides from the leaves of Euclinia longiflora Salisb. Natural Product Communications, 16(11), 1934578X211048628. https://doi.org/10.1177/1934578X211048628
Ododo, M. M., Choudhury, M. K., & Dekebo, A. H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus, 5(1), 1210. https://doi.org/10.1186/s40064-016-2894-x
Odoom-Wubah, T., Li, Q., Wang, Q., Rukhsana Usha, M. Z., Huang, J., & Li, Q. (2019). Template-free synthesis of carbon self-doped ZnO superstructures as efficient support for ultra fine Pd nanoparticles and their catalytic activity towards benzene oxidation. Molecular Catalysis, 469, 118–130. https://doi.org/https://doi.org/10.1016/j.mcat.2019.03.013
Ökte, A. N. (2014). Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Applied Catalysis A: General, 475, 27–39. https://doi.org/https://doi.org/10.1016/j.apcata.2014.01.019
Parmanand, Kumari, S., Mittal, A., Kumar, A., Krishna, & Sharma, S. K. (2019). Palladium Nanoparticles Immobilized on Schiff Base-Functionalized Graphene-Oxide: Application in Carbon-Carbon Cross-Coupling Reactions. ChemistrySelect, 4(36), 10828–10837. https://doi.org/https://doi.org/10.1002/slct.201902242
Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Lv, D.-M., Sun, J., Chen, Y., & Guo, G.-C. (2015). Enhanced Stability of Pd/ZnO Catalyst for CO Oxidative Coupling to Dimethyl Oxalate: Effect of Mg2+ Doping. ACS Catalysis, 5(7), 4410–4417. https://doi.org/10.1021/acscatal.5b00365
Raimundo e Silva, J. P., Policarpo, I. da S., Chaves, T. P., Coutinho, H. D. M., & Alves, H. da S. (2020). A glycosylated β-Sitosterol, isolated from Tacinga inamoena (Cactaceae), enhances the antibacterial activity of conventional antibiotics. South African Journal of Botany, 133, 193–200. https://doi.org/https://doi.org/10.1016/j.sajb.2020.07.017
Raj R, K., D, E., & S, R. (2020). β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. Journal of Biomedical Materials Research Part A, 108(9), 1899–1908. https://doi.org/https://doi.org/10.1002/jbm.a.36953
Rajeswari, R., & Gurumallesh Prabu, H. (2020). Palladium – Decorated reduced graphene oxide/zinc oxide nanocomposite for enhanced antimicrobial, antioxidant and cytotoxicity activities. Process Biochemistry, 93, 36–47. https://doi.org/https://doi.org/10.1016/j.procbio.2020.03.010
Rossi, L. M., Silva, F. P., Vono, L. L. R., Kiyohara, P. K., Duarte, E. L., Itri, R., Landers, R., & Machado, G. (2007). Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chemistry, 9(4), 379–385. https://doi.org/10.1039/B612980C
Shanmugam, P., Murthy, A. P., Theerthagiri, J., Wei, W., Madhavan, J., Kim, H.-S., Maiyalagan, T., & Xie, J. (2019). Robust bifunctional catalytic activities of N-doped carbon aerogel-nickel composites for electrocatalytic hydrogen evolution and hydrogenation of nitrocompounds. International Journal of Hydrogen Energy, 44(26), 13334–13344. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.03.225
Stadler, L., Homafar, M., Hartl, A., Najafishirtari, S., Colombo, M., Zboril, R., Martin, P., Gawande, M. B., Zhi, J., & Reiser, O. (2019). Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry & Engineering, 7(2), 2388–2399. https://doi.org/10.1021/acssuschemeng.8b05222
Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S. L., de Moraes Flores, É. M., Dotto, G. L., & Foletto, E. L. (2020). New insights into the mechanism of heterogeneous activation of nano–magnetite by microwave irradiation for use as Fenton catalyst. Journal of Environmental Chemical Engineering, 8(3), 103787. https://doi.org/https://doi.org/10.1016/j.jece.2020.103787
Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., & Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 75, 66–71. https://doi.org/https://doi.org/10.1016/j.physe.2015.08.040
Wu, W., Zhang, S., Xiao, X., Zhou, J., Ren, F., Sun, L., & Jiang, C. (2012). Controllable Synthesis, Magnetic Properties, and Enhanced Photocatalytic Activity of Spindlelike Mesoporous α-Fe2O3/ZnO Core–Shell Heterostructures. ACS Applied Materials & Interfaces, 4(7), 3602–3609. https://doi.org/10.1021/am300669a
Yadav, D., & Awasthi, S. K. (2020). A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 22(13), 4295–4303. https://doi.org/10.1039/D0GC01469A
Yang, J., Zhu, Y., Fan, M., Sun, X., Wang, W. D., & Dong, Z. (2019). Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. Journal of Colloid and Interface Science, 554, 157–165. https://doi.org/https://doi.org/10.1016/j.jcis.2019.07.006
Yilmaz, F. (2018). Heterogen Catalysis in Sustainable Green Solvent: Alkenes Hydrogenation With New Silica Immobilized Palladium Complex Containing S,O-Chelating Ligand. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 1. https://doi.org/10.18038/aubtda.409518
Yu, T., Jiao, J., Song, P., Nie, W., Yi, C., Zhang, Q., & Li, P. (2020). Recent Progress in Continuous-Flow Hydrogenation. ChemSusChem, 13(11), 2876–2893. https://doi.org/https://doi.org/10.1002/cssc.202000778
Zhang, H., Guo, W., Lu, N., & Fan, B. (2020). Solvent-free selective oxidation of aromatic alcohol with O2 over MgAl-LDH supported Pd nanoparticles: Effects of preparation methods and solvents. Materials Chemistry and Physics, 252, 123193. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.123193
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Robson da Silva Souto; Samara da Silva Razini; Angélica Correa Kauffmann; Virgínia Claudia Paulino Silva; Paulo Teixeira de Sousa Jr; Andris Bakuzis; Luis Cesar Fontana; Marcos José Jacinto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.