Síntesis verde de nanopartículas de Pd soportadas en Fe3O4@ZnO para reacciones de oxidación e hidrogenación en sistemas líquidos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i14.36004

Palabras clave:

Nanomateriales; Separación magnética; Biosíntesis.

Resumen

En este trabajo se sintetizaron nanopartículas de Pd inmovilizadas sobre un soporte sólido híbrido compuesto por Fe3O4 recubierto con una capa de ZnO mediante un método verde que utiliza agua, un sustrato biológico de una planta local (Rhamnidium elaeocarpum) y sales metálicas de Fe3+ y Zn2+. 1H-NMR y 13C-NM revelaron β-sitosterol como componente principal del sustrato biológico. El soporte catalítico que contiene nanopartículas de Pd se aplicó en tres modelos de sistemas catalíticos sólido-líquido, a saber: oxidación de alcoholes, reducción de nitrocompuestos e hidrogenación de olefinas. Para la oxidación del alcohol, se usó alcohol bencílico como sustrato en una condición libre de solventes, con alta selectividad hacia el benzaldehído, y una sola muestra del catalizador se pudo reciclar hasta 11 veces antes de que se pudiera detectar cualquier pérdida de actividad. Se logró un TOF (frecuencia de rotación) de 13 686 h-1 para la oxidación del sustrato con una tasa de rendimiento promedio del 45,4 % para la formación de benzaldehído y una conversión promedio del sustrato del 81,6 % después de 6 ciclos catalíticos. Para los experimentos de hidrogenación utilizando ciclohexeno y 4-nitrofenol como sustratos modelo, la conversión fue del 96 % para 4-aminofenol y ciclohexano, respectivamente, después de 30 minutos de reacción. Además, una sola muestra del catalizador podría reciclarse hasta 17 veces para la reducción de 4-nitrofenol y 21 veces para la hidrogenación de ciclohexeno. El reciclaje catalítico de todas las reacciones estudiadas se realizó de forma sencilla debido a la propiedad superparamagnética del material, y el aislamiento del catalizador después de cada lote se pudo realizar rápidamente utilizando un imán de Nd. Estos resultados sugieren que se puede fabricar un sistema catalítico altamente activo y estable basado en nanopartículas de Pd soportadas en un sólido multifuncional utilizando biomasa verde barata en condiciones de síntesis operativamente simples.

Citas

Al-Nuairi, A. G., Mosa, K. A., Mohammad, M. G., El-Keblawy, A., Soliman, S., & Alawadhi, H. (2020). Biosynthesis, Characterization, and Evaluation of the Cytotoxic Effects of Biologically Synthesized Silver Nanoparticles from Cyperus conglomeratus Root Extracts on Breast Cancer Cell Line MCF-7. Biological Trace Element Research, 194(2), 560–569. https://doi.org/10.1007/s12011-019-01791-7

Ammar, S. H., Abdulnabi, W. A., & kader, H. D. A. (2020). Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ZnO/PMOs). Environmental Nanotechnology, Monitoring & Management, 13, 100289. https://doi.org/https://doi.org/10.1016/j.enmm.2020.100289

Ayaz Ahmed, K. B., Subramaniam, S., Veerappan, G., Hari, N., Sivasubramanian, A., & Veerappan, A. (2014). β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Advances, 4(103), 59130–59136. https://doi.org/10.1039/C4RA10626A

Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., & Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133–146. https://doi.org/https://doi.org/10.1016/j.jcat.2016.03.017

Bahtiar, S., Taufiq, A., Utomo, J., Hidayat, N., & Sunaryono, S. (2019). Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conference Series: Materials Science and Engineering, 515, 12076. https://doi.org/10.1088/1757-899X/515/1/012076

Bankar, D. B., Hawaldar, R. R., Arbuj, S. S., Shinde, S. T., Gadde, J. R., Rakshe, D. S., Amalnerkar, D. P., & Kanade, K. G. (2020). Palladium loaded on ZnO nanoparticles: Synthesis, characterization and application as heterogeneous catalyst for Suzuki–Miyaura cross-coupling reactions under ambient and ligand-free conditions. Materials Chemistry and Physics, 243, 122561. https://doi.org/https://doi.org/10.1016/j.matchemphys.2019.122561

Barrios, C. E., Bosco, M. V, Baltanás, M. A., & Bonivardi, A. L. (2015). Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Applied Catalysis B: Environmental, 179, 262–275. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.05.030

Batista, F. R. M., da S. Melo, I. E. M., dos Santos Pereira, L., Lima, A. A. G., Bashal, A. H., Costa, J. C. S., Magalhães, J. L., Lima, F. C. A., de Moura, C., Garcia, M. A. S., & de Moura, E. M. (2020). Screening of the Au:Pt Atomic Ratio Supported in SrCO3: Effects on the Performance of the Solvent-Free Oxidation of Benzyl Alcohol. Journal of the Brazilian Chemical Society, 31, 488. https://doi.org/https://doi.org/10.21577/0103-5053.20190207

Cable, R. E., & Schaak, R. E. (2007). Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors. Chemistry of Materials, 19(16), 4098–4104. https://doi.org/10.1021/cm071214j

Camargo, P., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research-Ibero-American Journal of Materials - MATER RES-IBERO-AM J MATER, 12. https://doi.org/10.1590/S1516-14392009000100002

Cao, P., Yang, Z., Navale, S. T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F. J., & Zhu, D. (2019). Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sensors and Actuators B: Chemical, 298, 126850. https://doi.org/https://doi.org/10.1016/j.snb.2019.126850

Chuc, L. T. N., Chen, C.-S., Lo, W.-S., Shen, P.-C., Hsuan, Y.-C., Tsai, H.-H. G., Shieh, F.-K., & Hou, D.-R. (2017). Long-Range Olefin Isomerization Catalyzed by Palladium(0) Nanoparticles. ACS Omega, 2(2), 698–711. https://doi.org/10.1021/acsomega.6b00509

Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., & Muniz-Miranda, M. (2011). Production of Palladium Nanoparticles by Pulsed Laser Ablation in Water and Their Characterization. The Journal of Physical Chemistry C, 115(12), 5073–5083. https://doi.org/10.1021/jp109281q

da Silva, F. P., Fiorio, J. L., & Rossi, L. M. (2017). Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2(9), 6014–6022. https://doi.org/10.1021/acsomega.7b00836

da Silva, R. A., Jacinto, M. J., Silva, V. C., & Cabana, D. C. (2018). Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. Journal of Sol-Gel Science and Technology, 86(1), 94–103. https://doi.org/10.1007/s10971-018-4607-0

Gaikwad, D. S., Undale, K. A., Kalel, R. A., & Patil, D. B. (2019). Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. Journal of the Iranian Chemical Society, 16(10), 2135–2141. https://doi.org/10.1007/s13738-019-01682-7

Galvanin, F., Sankar, M., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J., & Gavriilidis, A. (2018). On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal, 342, 196–210. https://doi.org/https://doi.org/10.1016/j.cej.2017.11.165

Guo, Y., Gao, Y., Li, X., Zhuang, G., Wang, K., Zheng, Y., Sun, D., Huang, J., & Li, Q. (2019). Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 362, 41–52. https://doi.org/https://doi.org/10.1016/j.cej.2019.01.012

Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J., & Walke, P. S. (2019). Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sensors and Actuators B: Chemical, 293, 83–92. https://doi.org/https://doi.org/10.1016/j.snb.2019.04.086

Hu, Z., Zhou, G., Xu, L., Yang, J., Zhang, B., & Xiang, X. (2019). Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 471, 852–861. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.067

Ismaeel, S., Jaber, H., & Zayed, R. (2020). ISOLATION OF β-SITOSTEROL FROM TAMARIX APHYLLA OF IRAQ. Biochem. Cell. Arch. 20(2), 6497–6502. https://doi.org/https://connectjournals.com/03896.2020.20.6497

Jacinto, M. J., Souto, R. S., Silva, V. C. P., Prescilio, I. C., Kauffmann, A. C., Soares, M. A., de Souza, J. R., Bakuzis, A. F., & Fontana, L. C. (2021). Biosynthesis of Cube-Shaped Fe3O4 Nanoparticles for Removal of Dyes Using Fenton Process. Water, Air, & Soil Pollution, 232(7), 270. https://doi.org/10.1007/s11270-021-05233-w

Khataee, A. R., Karimi, A., Soltani, R. D. C., Safarpour, M., Hanifehpour, Y., & Joo, S. W. (2014). Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Applied Catalysis A: General, 488, 160–170. https://doi.org/https://doi.org/10.1016/j.apcata.2014.09.039

Kibis, L. S., Titkov, A. I., Stadnichenko, A. I., Koscheev, S. V, & Boronin, A. I. (2009). X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Applied Surface Science, 255(22), 9248–9254. https://doi.org/https://doi.org/10.1016/j.apsusc.2009.07.011

Kuai, L., Chen, Z., Liu, S., Kan, E., Yu, N., Ren, Y., Fang, C., Li, X., Li, Y., & Geng, B. (2020). Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 11(1), 48. https://doi.org/10.1038/s41467-019-13941-5

Li, X., Feng, J., Sun, J., Wang, Z., & Zhao, W. (2019). Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. Nanoscale Research Letters, 14(1), 394. https://doi.org/10.1186/s11671-019-3211-8

Li, X., Zeng, Z., Hu, B., Qian, L., & Hong, X. (2017). Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. ChemCatChem, 9(6), 924–928. https://doi.org/https://doi.org/10.1002/cctc.201601119

Liqiang, J., Baiqi, W., Baifu, X., Shudan, L., Keying, S., Weimin, C., & Honggang, F. (2004). Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. Journal of Solid State Chemistry, 177(11), 4221–4227. https://doi.org/https://doi.org/10.1016/j.jssc.2004.08.016

López-Salazar, H., Camacho-Díaz, B. H., Ávila-Reyes, S. V, Pérez-García, M. D., González- Cortazar, M., Arenas Ocampo, M. L., & Jiménez-Aparicio, A. R. (2019). Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. In Molecules (Vol. 24, Issue 21). https://doi.org/10.3390/molecules24213926

Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., & Ma, Y. (2019). Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. Journal of Materials Science, 54(1), 323–334. https://doi.org/10.1007/s10853-018-2868-1

Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037–3058. https://doi.org/10.1021/cr0200116

Miceli, M., Frontera, P., Macario, A., & Malara, A. (2021). Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11(5). https://doi.org/https://doi.org/10.3390/catal11050591

Miedziak, P. J., He, Q., Edwards, J. K., Taylor, S. H., Knight, D. W., Tarbit, B., Kiely, C. J., & Hutchings, G. J. (2011). Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 163(1), 47–54. https://doi.org/https://doi.org/10.1016/j.cattod.2010.02.051

Moon, J., Park, J.-A., Lee, S.-J., Zyung, T., & Kim, I.-D. (2010). Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors and Actuators B: Chemical, 149(1), 301–305. https://doi.org/https://doi.org/10.1016/j.snb.2010.06.033

Munvera, A., Nyemb, J. N., Alfred Ngenge, T., Mafo, M. A. F., Nuzhat, S., & Nkengfack, A. E. (2021). First report of isolation of antibacterial ceramides from the leaves of Euclinia longiflora Salisb. Natural Product Communications, 16(11), 1934578X211048628. https://doi.org/10.1177/1934578X211048628

Ododo, M. M., Choudhury, M. K., & Dekebo, A. H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus, 5(1), 1210. https://doi.org/10.1186/s40064-016-2894-x

Odoom-Wubah, T., Li, Q., Wang, Q., Rukhsana Usha, M. Z., Huang, J., & Li, Q. (2019). Template-free synthesis of carbon self-doped ZnO superstructures as efficient support for ultra fine Pd nanoparticles and their catalytic activity towards benzene oxidation. Molecular Catalysis, 469, 118–130. https://doi.org/https://doi.org/10.1016/j.mcat.2019.03.013

Ökte, A. N. (2014). Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Applied Catalysis A: General, 475, 27–39. https://doi.org/https://doi.org/10.1016/j.apcata.2014.01.019

Parmanand, Kumari, S., Mittal, A., Kumar, A., Krishna, & Sharma, S. K. (2019). Palladium Nanoparticles Immobilized on Schiff Base-Functionalized Graphene-Oxide: Application in Carbon-Carbon Cross-Coupling Reactions. ChemistrySelect, 4(36), 10828–10837. https://doi.org/https://doi.org/10.1002/slct.201902242

Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Lv, D.-M., Sun, J., Chen, Y., & Guo, G.-C. (2015). Enhanced Stability of Pd/ZnO Catalyst for CO Oxidative Coupling to Dimethyl Oxalate: Effect of Mg2+ Doping. ACS Catalysis, 5(7), 4410–4417. https://doi.org/10.1021/acscatal.5b00365

Raimundo e Silva, J. P., Policarpo, I. da S., Chaves, T. P., Coutinho, H. D. M., & Alves, H. da S. (2020). A glycosylated β-Sitosterol, isolated from Tacinga inamoena (Cactaceae), enhances the antibacterial activity of conventional antibiotics. South African Journal of Botany, 133, 193–200. https://doi.org/https://doi.org/10.1016/j.sajb.2020.07.017

Raj R, K., D, E., & S, R. (2020). β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. Journal of Biomedical Materials Research Part A, 108(9), 1899–1908. https://doi.org/https://doi.org/10.1002/jbm.a.36953

Rajeswari, R., & Gurumallesh Prabu, H. (2020). Palladium – Decorated reduced graphene oxide/zinc oxide nanocomposite for enhanced antimicrobial, antioxidant and cytotoxicity activities. Process Biochemistry, 93, 36–47. https://doi.org/https://doi.org/10.1016/j.procbio.2020.03.010

Rossi, L. M., Silva, F. P., Vono, L. L. R., Kiyohara, P. K., Duarte, E. L., Itri, R., Landers, R., & Machado, G. (2007). Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chemistry, 9(4), 379–385. https://doi.org/10.1039/B612980C

Shanmugam, P., Murthy, A. P., Theerthagiri, J., Wei, W., Madhavan, J., Kim, H.-S., Maiyalagan, T., & Xie, J. (2019). Robust bifunctional catalytic activities of N-doped carbon aerogel-nickel composites for electrocatalytic hydrogen evolution and hydrogenation of nitrocompounds. International Journal of Hydrogen Energy, 44(26), 13334–13344. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.03.225

Stadler, L., Homafar, M., Hartl, A., Najafishirtari, S., Colombo, M., Zboril, R., Martin, P., Gawande, M. B., Zhi, J., & Reiser, O. (2019). Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry & Engineering, 7(2), 2388–2399. https://doi.org/10.1021/acssuschemeng.8b05222

Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S. L., de Moraes Flores, É. M., Dotto, G. L., & Foletto, E. L. (2020). New insights into the mechanism of heterogeneous activation of nano–magnetite by microwave irradiation for use as Fenton catalyst. Journal of Environmental Chemical Engineering, 8(3), 103787. https://doi.org/https://doi.org/10.1016/j.jece.2020.103787

Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., & Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 75, 66–71. https://doi.org/https://doi.org/10.1016/j.physe.2015.08.040

Wu, W., Zhang, S., Xiao, X., Zhou, J., Ren, F., Sun, L., & Jiang, C. (2012). Controllable Synthesis, Magnetic Properties, and Enhanced Photocatalytic Activity of Spindlelike Mesoporous α-Fe2O3/ZnO Core–Shell Heterostructures. ACS Applied Materials & Interfaces, 4(7), 3602–3609. https://doi.org/10.1021/am300669a

Yadav, D., & Awasthi, S. K. (2020). A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 22(13), 4295–4303. https://doi.org/10.1039/D0GC01469A

Yang, J., Zhu, Y., Fan, M., Sun, X., Wang, W. D., & Dong, Z. (2019). Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. Journal of Colloid and Interface Science, 554, 157–165. https://doi.org/https://doi.org/10.1016/j.jcis.2019.07.006

Yilmaz, F. (2018). Heterogen Catalysis in Sustainable Green Solvent: Alkenes Hydrogenation With New Silica Immobilized Palladium Complex Containing S,O-Chelating Ligand. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 1. https://doi.org/10.18038/aubtda.409518

Yu, T., Jiao, J., Song, P., Nie, W., Yi, C., Zhang, Q., & Li, P. (2020). Recent Progress in Continuous-Flow Hydrogenation. ChemSusChem, 13(11), 2876–2893. https://doi.org/https://doi.org/10.1002/cssc.202000778

Zhang, H., Guo, W., Lu, N., & Fan, B. (2020). Solvent-free selective oxidation of aromatic alcohol with O2 over MgAl-LDH supported Pd nanoparticles: Effects of preparation methods and solvents. Materials Chemistry and Physics, 252, 123193. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.123193

Descargas

Publicado

21/10/2022

Cómo citar

SOUTO, R. da S. .; RAZINI, S. da S. .; KAUFFMANN, A. C. .; SILVA, V. C. P. .; SOUSA JR, P. T. de .; BAKUZIS, A.; FONTANA, L. C.; JACINTO, M. J. . Síntesis verde de nanopartículas de Pd soportadas en Fe3O4@ZnO para reacciones de oxidación e hidrogenación en sistemas líquidos. Research, Society and Development, [S. l.], v. 11, n. 14, p. e109111436004, 2022. DOI: 10.33448/rsd-v11i14.36004. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36004. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Exactas y de la Tierra