Síntese verde de nanopartículas de Pd suportadas em Fe3O4@ZnO para reações de oxidação e hidrogenação em sistemas líquidos

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36004

Palavras-chave:

Nanomateriais; Separação magnética; Biossíntese.

Resumo

Neste trabalho, nanopartículas de Pd imobilizadas em um suporte sólido híbrido composto de Fe3O4 revestido por uma camada de ZnO foram sintetizadas por um método verde que utiliza água, um substrato biológico de uma planta local (Rhamnidium elaeocarpum) e sais metálicos de Fe3+ e Zn2+. 1H-NMR e 13C-NM revelaram o β-sitosterol como o principal componente do substrato biológico. O suporte catalítico contendo nanopartículas de Pd foi aplicado em três modelos de sistemas catalíticos sólido-líquido, a saber: oxidação de álcool, redução de nitrocompostos e hidrogenação de olefinas. Para a oxidação do álcool, o álcool benzílico foi usado como substrato em uma condição livre de solvente, com alta seletividade em relação ao benzaldeído, e uma única amostra do catalisador pôde ser reciclada até 11 vezes antes que qualquer perda de atividade pudesse ser detectada. TOF (frequência de rotatividade) de 13.686 h-1 para a oxidação do substrato foi alcançado com uma taxa média de rendimento de 45,4% para a formação de benzaldeído e 81,6% de conversão média do substrato após 6 ciclos catalíticos. Para os experimentos de hidrogenação usando ciclohexeno e 4-nitrofenol como substratos modelo, a conversão foi de 96% para 4-aminofenol e ciclohexano, respectivamente, após 30 minutos de reação. Além disso, uma única amostra do catalisador pôde ser reciclada por até 17 vezes para a redução do 4-nitrofenol, e 21 vezes na hidrogenação do ciclohexeno. A reciclagem catalítica para todas as reações estudadas foi realizada de forma simples devido à propriedade superparamagnética do material, e o isolamento do catalisador após cada lote pôde ser realizado rapidamente usando um ímã de Nd. Esses resultados sugerem que um sistema catalítico altamente ativo e estável baseado em nanopartículas de Pd suportadas em um sólido multifuncional pode ser fabricado usando biomassa verde e barata em condições de síntese operacionalmente simples.

Referências

Al-Nuairi, A. G., Mosa, K. A., Mohammad, M. G., El-Keblawy, A., Soliman, S., & Alawadhi, H. (2020). Biosynthesis, Characterization, and Evaluation of the Cytotoxic Effects of Biologically Synthesized Silver Nanoparticles from Cyperus conglomeratus Root Extracts on Breast Cancer Cell Line MCF-7. Biological Trace Element Research, 194(2), 560–569. https://doi.org/10.1007/s12011-019-01791-7

Ammar, S. H., Abdulnabi, W. A., & kader, H. D. A. (2020). Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ZnO/PMOs). Environmental Nanotechnology, Monitoring & Management, 13, 100289. https://doi.org/https://doi.org/10.1016/j.enmm.2020.100289

Ayaz Ahmed, K. B., Subramaniam, S., Veerappan, G., Hari, N., Sivasubramanian, A., & Veerappan, A. (2014). β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Advances, 4(103), 59130–59136. https://doi.org/10.1039/C4RA10626A

Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., & Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133–146. https://doi.org/https://doi.org/10.1016/j.jcat.2016.03.017

Bahtiar, S., Taufiq, A., Utomo, J., Hidayat, N., & Sunaryono, S. (2019). Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conference Series: Materials Science and Engineering, 515, 12076. https://doi.org/10.1088/1757-899X/515/1/012076

Bankar, D. B., Hawaldar, R. R., Arbuj, S. S., Shinde, S. T., Gadde, J. R., Rakshe, D. S., Amalnerkar, D. P., & Kanade, K. G. (2020). Palladium loaded on ZnO nanoparticles: Synthesis, characterization and application as heterogeneous catalyst for Suzuki–Miyaura cross-coupling reactions under ambient and ligand-free conditions. Materials Chemistry and Physics, 243, 122561. https://doi.org/https://doi.org/10.1016/j.matchemphys.2019.122561

Barrios, C. E., Bosco, M. V, Baltanás, M. A., & Bonivardi, A. L. (2015). Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Applied Catalysis B: Environmental, 179, 262–275. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.05.030

Batista, F. R. M., da S. Melo, I. E. M., dos Santos Pereira, L., Lima, A. A. G., Bashal, A. H., Costa, J. C. S., Magalhães, J. L., Lima, F. C. A., de Moura, C., Garcia, M. A. S., & de Moura, E. M. (2020). Screening of the Au:Pt Atomic Ratio Supported in SrCO3: Effects on the Performance of the Solvent-Free Oxidation of Benzyl Alcohol. Journal of the Brazilian Chemical Society, 31, 488. https://doi.org/https://doi.org/10.21577/0103-5053.20190207

Cable, R. E., & Schaak, R. E. (2007). Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors. Chemistry of Materials, 19(16), 4098–4104. https://doi.org/10.1021/cm071214j

Camargo, P., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research-Ibero-American Journal of Materials - MATER RES-IBERO-AM J MATER, 12. https://doi.org/10.1590/S1516-14392009000100002

Cao, P., Yang, Z., Navale, S. T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F. J., & Zhu, D. (2019). Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sensors and Actuators B: Chemical, 298, 126850. https://doi.org/https://doi.org/10.1016/j.snb.2019.126850

Chuc, L. T. N., Chen, C.-S., Lo, W.-S., Shen, P.-C., Hsuan, Y.-C., Tsai, H.-H. G., Shieh, F.-K., & Hou, D.-R. (2017). Long-Range Olefin Isomerization Catalyzed by Palladium(0) Nanoparticles. ACS Omega, 2(2), 698–711. https://doi.org/10.1021/acsomega.6b00509

Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., & Muniz-Miranda, M. (2011). Production of Palladium Nanoparticles by Pulsed Laser Ablation in Water and Their Characterization. The Journal of Physical Chemistry C, 115(12), 5073–5083. https://doi.org/10.1021/jp109281q

da Silva, F. P., Fiorio, J. L., & Rossi, L. M. (2017). Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2(9), 6014–6022. https://doi.org/10.1021/acsomega.7b00836

da Silva, R. A., Jacinto, M. J., Silva, V. C., & Cabana, D. C. (2018). Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. Journal of Sol-Gel Science and Technology, 86(1), 94–103. https://doi.org/10.1007/s10971-018-4607-0

Gaikwad, D. S., Undale, K. A., Kalel, R. A., & Patil, D. B. (2019). Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. Journal of the Iranian Chemical Society, 16(10), 2135–2141. https://doi.org/10.1007/s13738-019-01682-7

Galvanin, F., Sankar, M., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J., & Gavriilidis, A. (2018). On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal, 342, 196–210. https://doi.org/https://doi.org/10.1016/j.cej.2017.11.165

Guo, Y., Gao, Y., Li, X., Zhuang, G., Wang, K., Zheng, Y., Sun, D., Huang, J., & Li, Q. (2019). Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 362, 41–52. https://doi.org/https://doi.org/10.1016/j.cej.2019.01.012

Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J., & Walke, P. S. (2019). Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sensors and Actuators B: Chemical, 293, 83–92. https://doi.org/https://doi.org/10.1016/j.snb.2019.04.086

Hu, Z., Zhou, G., Xu, L., Yang, J., Zhang, B., & Xiang, X. (2019). Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 471, 852–861. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.067

Ismaeel, S., Jaber, H., & Zayed, R. (2020). ISOLATION OF β-SITOSTEROL FROM TAMARIX APHYLLA OF IRAQ. Biochem. Cell. Arch. 20(2), 6497–6502. https://doi.org/https://connectjournals.com/03896.2020.20.6497

Jacinto, M. J., Souto, R. S., Silva, V. C. P., Prescilio, I. C., Kauffmann, A. C., Soares, M. A., de Souza, J. R., Bakuzis, A. F., & Fontana, L. C. (2021). Biosynthesis of Cube-Shaped Fe3O4 Nanoparticles for Removal of Dyes Using Fenton Process. Water, Air, & Soil Pollution, 232(7), 270. https://doi.org/10.1007/s11270-021-05233-w

Khataee, A. R., Karimi, A., Soltani, R. D. C., Safarpour, M., Hanifehpour, Y., & Joo, S. W. (2014). Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Applied Catalysis A: General, 488, 160–170. https://doi.org/https://doi.org/10.1016/j.apcata.2014.09.039

Kibis, L. S., Titkov, A. I., Stadnichenko, A. I., Koscheev, S. V, & Boronin, A. I. (2009). X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Applied Surface Science, 255(22), 9248–9254. https://doi.org/https://doi.org/10.1016/j.apsusc.2009.07.011

Kuai, L., Chen, Z., Liu, S., Kan, E., Yu, N., Ren, Y., Fang, C., Li, X., Li, Y., & Geng, B. (2020). Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 11(1), 48. https://doi.org/10.1038/s41467-019-13941-5

Li, X., Feng, J., Sun, J., Wang, Z., & Zhao, W. (2019). Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. Nanoscale Research Letters, 14(1), 394. https://doi.org/10.1186/s11671-019-3211-8

Li, X., Zeng, Z., Hu, B., Qian, L., & Hong, X. (2017). Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. ChemCatChem, 9(6), 924–928. https://doi.org/https://doi.org/10.1002/cctc.201601119

Liqiang, J., Baiqi, W., Baifu, X., Shudan, L., Keying, S., Weimin, C., & Honggang, F. (2004). Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. Journal of Solid State Chemistry, 177(11), 4221–4227. https://doi.org/https://doi.org/10.1016/j.jssc.2004.08.016

López-Salazar, H., Camacho-Díaz, B. H., Ávila-Reyes, S. V, Pérez-García, M. D., González- Cortazar, M., Arenas Ocampo, M. L., & Jiménez-Aparicio, A. R. (2019). Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. In Molecules (Vol. 24, Issue 21). https://doi.org/10.3390/molecules24213926

Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., & Ma, Y. (2019). Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. Journal of Materials Science, 54(1), 323–334. https://doi.org/10.1007/s10853-018-2868-1

Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037–3058. https://doi.org/10.1021/cr0200116

Miceli, M., Frontera, P., Macario, A., & Malara, A. (2021). Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11(5). https://doi.org/https://doi.org/10.3390/catal11050591

Miedziak, P. J., He, Q., Edwards, J. K., Taylor, S. H., Knight, D. W., Tarbit, B., Kiely, C. J., & Hutchings, G. J. (2011). Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 163(1), 47–54. https://doi.org/https://doi.org/10.1016/j.cattod.2010.02.051

Moon, J., Park, J.-A., Lee, S.-J., Zyung, T., & Kim, I.-D. (2010). Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors and Actuators B: Chemical, 149(1), 301–305. https://doi.org/https://doi.org/10.1016/j.snb.2010.06.033

Munvera, A., Nyemb, J. N., Alfred Ngenge, T., Mafo, M. A. F., Nuzhat, S., & Nkengfack, A. E. (2021). First report of isolation of antibacterial ceramides from the leaves of Euclinia longiflora Salisb. Natural Product Communications, 16(11), 1934578X211048628. https://doi.org/10.1177/1934578X211048628

Ododo, M. M., Choudhury, M. K., & Dekebo, A. H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus, 5(1), 1210. https://doi.org/10.1186/s40064-016-2894-x

Odoom-Wubah, T., Li, Q., Wang, Q., Rukhsana Usha, M. Z., Huang, J., & Li, Q. (2019). Template-free synthesis of carbon self-doped ZnO superstructures as efficient support for ultra fine Pd nanoparticles and their catalytic activity towards benzene oxidation. Molecular Catalysis, 469, 118–130. https://doi.org/https://doi.org/10.1016/j.mcat.2019.03.013

Ökte, A. N. (2014). Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Applied Catalysis A: General, 475, 27–39. https://doi.org/https://doi.org/10.1016/j.apcata.2014.01.019

Parmanand, Kumari, S., Mittal, A., Kumar, A., Krishna, & Sharma, S. K. (2019). Palladium Nanoparticles Immobilized on Schiff Base-Functionalized Graphene-Oxide: Application in Carbon-Carbon Cross-Coupling Reactions. ChemistrySelect, 4(36), 10828–10837. https://doi.org/https://doi.org/10.1002/slct.201902242

Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Lv, D.-M., Sun, J., Chen, Y., & Guo, G.-C. (2015). Enhanced Stability of Pd/ZnO Catalyst for CO Oxidative Coupling to Dimethyl Oxalate: Effect of Mg2+ Doping. ACS Catalysis, 5(7), 4410–4417. https://doi.org/10.1021/acscatal.5b00365

Raimundo e Silva, J. P., Policarpo, I. da S., Chaves, T. P., Coutinho, H. D. M., & Alves, H. da S. (2020). A glycosylated β-Sitosterol, isolated from Tacinga inamoena (Cactaceae), enhances the antibacterial activity of conventional antibiotics. South African Journal of Botany, 133, 193–200. https://doi.org/https://doi.org/10.1016/j.sajb.2020.07.017

Raj R, K., D, E., & S, R. (2020). β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. Journal of Biomedical Materials Research Part A, 108(9), 1899–1908. https://doi.org/https://doi.org/10.1002/jbm.a.36953

Rajeswari, R., & Gurumallesh Prabu, H. (2020). Palladium – Decorated reduced graphene oxide/zinc oxide nanocomposite for enhanced antimicrobial, antioxidant and cytotoxicity activities. Process Biochemistry, 93, 36–47. https://doi.org/https://doi.org/10.1016/j.procbio.2020.03.010

Rossi, L. M., Silva, F. P., Vono, L. L. R., Kiyohara, P. K., Duarte, E. L., Itri, R., Landers, R., & Machado, G. (2007). Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chemistry, 9(4), 379–385. https://doi.org/10.1039/B612980C

Shanmugam, P., Murthy, A. P., Theerthagiri, J., Wei, W., Madhavan, J., Kim, H.-S., Maiyalagan, T., & Xie, J. (2019). Robust bifunctional catalytic activities of N-doped carbon aerogel-nickel composites for electrocatalytic hydrogen evolution and hydrogenation of nitrocompounds. International Journal of Hydrogen Energy, 44(26), 13334–13344. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.03.225

Stadler, L., Homafar, M., Hartl, A., Najafishirtari, S., Colombo, M., Zboril, R., Martin, P., Gawande, M. B., Zhi, J., & Reiser, O. (2019). Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry & Engineering, 7(2), 2388–2399. https://doi.org/10.1021/acssuschemeng.8b05222

Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S. L., de Moraes Flores, É. M., Dotto, G. L., & Foletto, E. L. (2020). New insights into the mechanism of heterogeneous activation of nano–magnetite by microwave irradiation for use as Fenton catalyst. Journal of Environmental Chemical Engineering, 8(3), 103787. https://doi.org/https://doi.org/10.1016/j.jece.2020.103787

Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., & Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 75, 66–71. https://doi.org/https://doi.org/10.1016/j.physe.2015.08.040

Wu, W., Zhang, S., Xiao, X., Zhou, J., Ren, F., Sun, L., & Jiang, C. (2012). Controllable Synthesis, Magnetic Properties, and Enhanced Photocatalytic Activity of Spindlelike Mesoporous α-Fe2O3/ZnO Core–Shell Heterostructures. ACS Applied Materials & Interfaces, 4(7), 3602–3609. https://doi.org/10.1021/am300669a

Yadav, D., & Awasthi, S. K. (2020). A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 22(13), 4295–4303. https://doi.org/10.1039/D0GC01469A

Yang, J., Zhu, Y., Fan, M., Sun, X., Wang, W. D., & Dong, Z. (2019). Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. Journal of Colloid and Interface Science, 554, 157–165. https://doi.org/https://doi.org/10.1016/j.jcis.2019.07.006

Yilmaz, F. (2018). Heterogen Catalysis in Sustainable Green Solvent: Alkenes Hydrogenation With New Silica Immobilized Palladium Complex Containing S,O-Chelating Ligand. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 1. https://doi.org/10.18038/aubtda.409518

Yu, T., Jiao, J., Song, P., Nie, W., Yi, C., Zhang, Q., & Li, P. (2020). Recent Progress in Continuous-Flow Hydrogenation. ChemSusChem, 13(11), 2876–2893. https://doi.org/https://doi.org/10.1002/cssc.202000778

Zhang, H., Guo, W., Lu, N., & Fan, B. (2020). Solvent-free selective oxidation of aromatic alcohol with O2 over MgAl-LDH supported Pd nanoparticles: Effects of preparation methods and solvents. Materials Chemistry and Physics, 252, 123193. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.123193

Downloads

Publicado

21/10/2022

Como Citar

SOUTO, R. da S. .; RAZINI, S. da S. .; KAUFFMANN, A. C. .; SILVA, V. C. P. .; SOUSA JR, P. T. de .; BAKUZIS, A.; FONTANA, L. C.; JACINTO, M. J. . Síntese verde de nanopartículas de Pd suportadas em Fe3O4@ZnO para reações de oxidação e hidrogenação em sistemas líquidos. Research, Society and Development, [S. l.], v. 11, n. 14, p. e109111436004, 2022. DOI: 10.33448/rsd-v11i14.36004. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36004. Acesso em: 25 nov. 2024.

Edição

Seção

Ciências Exatas e da Terra