Expresión génica de factores de virulencia de Corynebacterium pseudotuberculosis y su papel en la patogenia de la linfadenitis caseosa
DOI:
https://doi.org/10.33448/rsd-v11i14.36061Palabras clave:
Corynebacterium pseudotuberculosis; Factores de virulência; Inmunidad.Resumen
Corynebacterium pseudotuberculosis es el agente causal de la linfadenitis caseosa (LC), una enfermedad infecciosa, granulomatosa, crónica y debilitante que afecta a varios animales, incluidos caprinos, ovinos, bovinos, equinos, camélidos y, más raramente, humanos. El grupo denominado CMNR, compuesto por bacterias de los géneros Corynebacterium, Mycobacterium, Nocardia y Rhodococcus, está involucrado en varias patologías importantes, tanto en medicina humana como veterinaria. El enfoque de los estudios con el agente etiológico de CL ha estado relacionado con el diagnóstico, la epidemiología, la profilaxis, la terapia y la genómica. Aunque la enfermedad ha sido estudiada desde principios del siglo XX, al igual que las causadas por otras entidades bacterianas, el estudio sobre la fisiopatología y los mecanismos de evasión de este agente son prácticamente desconocidos. Los factores de virulencia del agente etiológico de la linfadenitis caseosa son pocos, pero la secuenciación pionera del genoma de una cepa aislada de un paciente humano, C. pseudotuberculosis FRC41, permitió identificar y anotar varios genes codificadores de proteínas cuyas características fisiológicas coinciden con la definición del factor de virulencia. En Mycobacterium tuberculosis, la cinasa PknG controla el metabolismo de la glutamina, pero puede secretarse en fagosomas de macrófagos, lo que interfiere con la maduración de estos orgánulos. La misma enzima existe en otros representantes del suborden Corynebacterineae, incluido Corynebacterium pseudotuberculosis, ya se han descrito otros antígenos y se están dilucidando. En este contexto, el objetivo de este trabajo fue realizar una revisión sobre los factores de virulencia de C. pseudotuberculosis.
Citas
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular Biology of the Cell, (5a ed), Garland Ed.
Arden, S.B., Chang, W.H., & Barksdale, L. (1972). Distribution of neuraminidase and n-acetylneuraminate lyase activities among corynebacteria, mycobacteria, and nocardias. Journal of Bacteriology, 112, 3, 1206-1212. 10.1128/jb.112.3.1206-1212.1972
Arsenault, J., Girard, C., Dubreuil, P., Daignault, D., Galarneaeu, J., Boisclair, J., Simar, D., & Belanger, D. (2003). Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. Preventive Veterinary Medicine, 59, 1-2, 67-81. 10.1016/s0167-5877(03)00060-6
Banu, L. D., Conrads, G., Rehrauer, H., Hussain, H., Allan, E. &, Van Der Ploeg, J. R. (2020). The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infection and Immunity, 78, 5, 2209-2220. 10.1128/IAI.01167-09
Barral, T. D., Mariutti, R. B., Arni, R. K., Santos, A. J., Loureiro, D., Sokolonski, A. R., Azevedo, V., Borsuk, S., Meyer, R., & Portela, R. D. (2019). A panel of recombinant proteins for the serodiagnosis of caseous lymphadenitis in goats and sheep. Microbial Biotechnology, 1-11. 10.1111/1751-7915.13454
Barthe, P., Mukamolova, G. V., Roumestand, C., & Cohen-Gonsaud, M. (2010). The structure of PknB extracellular PASTA domain from Mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure, 18, 5, 606-615. 10.1016/j.str.2010.02.013
Bastos, B. L., Portela, R. W. D. ; Ribeiro, D ; Dorella, F.A.; Meyer, R.; & Azevedo, V. (2012) Corynebacterium pseudotuberculosis: Immunological Responses in Animal Models and Zoonotic Potential. Journal Clinical Cellular Immunology, 4, 5. 10.4172/2155-9899.S4-005
Beaman, B. L., Scates, S. M., Moring, S. E., Deem, R., & Misra, H. P. (1983). Purification and properties of a unique superoxide dismutase from Nocardia asteroides. Journal of Biological Chemistry, 258, 1, 91-96. 10.1016/S0021-9258(18)33224-1
Beaman, B. L., Black, C. M., Doughty, F., & Beaman, L. (1985). Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbicidal activities of human polymorphonuclear neutrophils. Infection and Immunity, 47(1), 35-41, 10.1128/iai.47.1.135-141.1985
Beaman, L. & Beaman, B. L. (1990). Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Nocardia asteroides within the intact host. Infection and Immunity, 58, 9, 3122-3128. 10.1128/iai.58.9.3122-3128.1990
Beltramini, A. M., Mukhopadhyay, C. D. & Pancholi, V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infection and Immunity, 77, 4, 1406-1416. 10.1128/IAI.01499-08.
Bogoyevitch, M. A., Barr, R .K. & Kettermann, A .J. (2005). Peptide inhibitors of protein kinases: discovery, characterization and use. Biochimica et Biophysica Acta, 1754, 1-2, 77-99. 10.1016/j.bbapap.2005.07.025.
Brogden, K. A., Engen, R. L., Songer, J. G., & Gallagher, J. (1990). Changes in ovine erythrocyte morphology due to sphingomyelin degradation by Corynebacterium pseudotuberculosis phospholipase D. Microbial Pathogenesis, 8, 2, 157-162. 10.1016/0882-4010(90)90080-a
Bullen, J. W., Balsbaugh, J. L., Chanda, D., Shabanowitz, J., Hunt, D. F., Neumann, D., & Hart, G. W. (2014). Crosstalk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). Journal of Biological Chemistry, 289, 15, 10592-10606. 10.1074/jbc.M113.523068
Burnside, K. & Lembo, (2011). A. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. Journal of Biological Chemistry, 286, 51, 44197-210. 10.1074/jbc.M111.313486
Calderón, V C W G., Rocha Filho, J T. R., Sá, M C A de, Bastos, B L ., Trindade, S C ., Cavalcante, N A da S. ., Farias, A P F de ., Wagner Dias Portela , R. ., Portela , R W D., Azevedo, V. ., & Meyer, R. . (2022). Avaliação de antígenos por ensaio imunoenzimático ELISA durante infecção experimental em caprinos com Corynebacterium pseudotuberculosis. Pesquisa, Sociedade e Desenvolvimento, 11 (12), e440111234549. https://doi.org/10.33448/rsd-v11i12.34549
Canova, M. J. & Molle, V. (2014). Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions. Journal of Biological Chemistry, 289, 9473-9479. 10.1074/jbc.R113.529917
Carne, H. R. & Onon, E. O. (1978). Action of Corynebacterium ovis exotoxin on endothelial cells of blood vessels. Nature, 271, 5642, 246-248. 10.1038/271246a0
Cheng, H. & Force, T. (2010). Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circulation research, 106, 1, 21-34. 10.1161/CIRCRESAHA.109.206920
De Rose, R., Tennent, J., Mcwaters, P., Chaplin, P. J., Wood, P. R., Kimpton, W., Cahill, R., & Scheerlinck, J. Y. (2002). Efficacy of DNA vaccination by different routes of immunization in sheep. Veterinary Immunol and Immunopatology, 90, 1/2, 55-63. 10.1016/s0165-2427(02)00221-0
D’orazio, M., Folcarelli, S., Mariani, F., Colizzi, V., Rotilio, G., & Battistoni, A. (2001). Lipid modification of the Cu,Zn superoxide dismutase from Mycobacterium tuberculosis. Biochemical Journal, 359, 1, 17-22. 10.1042/0264-6021:3590017
Dahr, M. S., Gupta, V. & Virdi, J. S. (2013). Detection, distribution and characterization of novel superoxide dismutases from Yersinia enterocolitica Biovar 1A. PLoS One, 8, 5, 1-12. 10.1371/journal.pone.0063919
Doran, K. S. & Nizet, V. (2004). Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Molecular Microbiology, 54, 23–3. 10.1111/j.1365-2958.2004.04266.x
Dorella, F. A; Pacheco, L. G., Oliveira, S. C., Miyoshi, A., & Azevedo, V. (2006). Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Veterinary Research, 37, 2, 201-218. 10.1128/AEM.00294-06
Droppa-Almeida, D., Vivas, W. L. P., Silva, K. K. O., Rezende, A. F. S., Simionatto, S., Meyer, R., Lima-Verde, I. B., Delagostin, O., Borsuk, S., & Padilha, F. F. (2016). Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain. Vaccine, 34, 1091-1096. 10.1016/j.vacina.2015.12.064
Dun, K. L. R., Farrant, J. L., Langford, P. R., & Kroll, J. S. (2003). Bacterial [Cu,Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitidis from phagocytosis by Human Monocytes/Macrophages. Infection and Immunity, 71, 3, 1604-7. 10.1128/IAI.71.3.1604-1607.2003
Fontaine, M. C., Baird, G., Connor, K. M., Rudge, K., Sales, J., & Donachie, W. (2006). Vaccination confers significant protection of sheep against infection with a virulent United Kingdom strain of Corynebacterium pseudotuberculosis. Vaccine, 24, 33-34, 5986-5996. 10.1016/j.vaccine.2006.05.005
Fujita, Y., Nakayama, M., Naito, M., Yamachika, E., Inoue, T., Nakayama, K., Iida, S., & Ohara, N. (2014). Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-κB signal transduction pathways. Infection and Immunity, 82, 1, 202-1. 10.1128/IAI.01140-12
Galperin, M. Y., Higdon, R. & Kolker, E. (2010). Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Molecular BioSystems, 6, 4, 721-728. 10.1039/b908047c
Gennari, M., Ghidini, V., Caburlotto, G., & Lleo, M. M. (2012). Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiology Ecology, 82, 3, 563-573. 10.1111/j.1574-6941.2012.01427.x
Gibson, C. M. & Caparon, M. G. (2002). Alkaline phosphatase reporter transposon for identification of genes encoding secreted proteins in gram-positive microorganisms. Applied and Environmental Microbiology, 68, 2, 928-932. 10.1128/AEM.68.02.928-932.2002
Goel, M. C. & Singh, I. P. (1972). Purification and characterization of Corynebacterium ovis exotoxin. Journal of Comparative Pathology, 82, 3, 345-53. 10.1016/0021-9975(72)90016-3
Greenstein, A. E., Echols, N., Lombana, T. N., King, D. S., & Alber, T. (2007). Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 282, 15, 11427-11435. 10.1074/jbc.M610193200
Guimarães, A. S., Carmo, F. B., Heinemann, M. B., Portela, R. W., Meyer, R., Lage, A. P., Seyffert, N., Miyoshi, A., Azevedo, V., & Gouveia, A. M. (2011). High sero-prevalence of caseous lymphadenitis identified in slaughterhouse samples as a consequence of deficiencies in sheep farm management in the state of Minas Gerais, Brazil. BMC Veterinary Research, 8, 7, 68. 10.1186/1746-6148-7-68
Haynes, J. A., Tkalcevic, J., & Nisbet, I. T. (1992). Production of an enzymatically inactive analog of phospholipase D from Corynebacterium pseudotuberculosis. Gene, 119, 1, 119-121. 10.1016/0378-1119(92)90075-z
Hoch, J. A. (2000). Two-component and phosphorelay signal transduction. Current Opinion in Microbiology, 3, 165–170. 10.1016/s1369-5274(00)00070-9
Hodgson, A.L., Bird, P., & Nisbet, I.T. (1990). Cloning, nucleotide sequence, and expression in Escherichia coli of the phospholipase D gene from Corynebacterium pseudotuberculosis. Journal of Bacteriology, 172, 3, 1256-1262. 10.1128/jb.172.3.1256-1261
Hodgson, A. L. M., Carter, K., Tachedjian, M., Krywult, J., Corner, L. A., McColl, M., & Cameron, A. (1999). Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D. Vaccine, 17, 802-808. 10.1016/s0264-410x(98)00264-3
Hunter T, & Hanks S k. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal, 9, 8, 576-596
Huse, M. & Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell, 09, 3, 275-282. 10.1016/s0092-8674(02)00741-9
Hussain, H., Branny, P. & Allan, E. (2006). A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. Journal of Bacteriology, 88, 4, 1628-32. 10.1128/JB.188.4.1628-1632.2006
Kennelly, P. J. (2002). Review Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiology Letters, 206, 1, 1-8. 10.1111/j.1574-6968.2002.tb10978.x
Kim, S., Oh, D. B., Kwon, O., & Kang, H. A. (2010). Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 88, 4, 893-903. 10.1007/s00253-010-2812-z
Koul A., Choidas, A., Tyagi, A.K., Drlica, K., Singh, Y., & Ullrich, A. (2001). Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology, 147, 8, 2307-2314. 10.1099/00221287-147-8-2307
Krupa, A. & Srinivasan, N. (2005). Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes. BMC Genomics, 6, 129,. 10.1186/1471-2164-6-129
Kumar, J., Tripathi, B. N., Kumar, R., Sonawane, G. G., & Dixit, S. K. (2013). Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep. Tropical Animal Health and Production, 45, 6, 1429-1435. 10.1007/s11250-013-0381-8
Kurniyati, K., Zhang, W., & Zhang, K., Li, C. (2013). A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Molecular Microbiology, 89, 5, 842-856. 10.1111/mmi.12311
Lin, W.J., Walthers, D., Connelly, J.E., Burnside, K., Jewell, K.A.., Kenney, L.J., Rajagopal, L. (2009). Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Molecular Microbiology, 71, 6, 1477-1495. 10.1111/j.1365-2958.2009.06616.x
Lowrie, D.B. How macrophages kill tubercle bacilli. Journal of Medical Microbiology, v.16, n.1, p.1-12, Feb 1983. 10.1099/00222615-16-1-1
Madec E., Laszkiewicz, A., Iwanicki, A., Obuchowski, M., & Séror, S. (2002). Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Molecular Microbiology, 46, 2, 571-586. 10.1046/j.1365-2958.2002.03178.x
Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 5600, 1912-1934. 10.1126/science.1075762
May, M. & Brown, D. R. (2009). Secreted sialidase activity of canine mycoplasmas. Veterinary Microbiology, 137, 3-4, 380-3. 10.1016/j.vetmic.2009.01.009
Mehra, A., Zahra, A., Thompson, V., Sirisaengtaksin, N., Wells, A., Porto, M., Köster, S., Penberthy, K., Kubota, Y.: Dricot, A., Rogan, D., Vidal, M., Hill, D. E., Bean, A. J., & Philips, J. A. (2013). Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLOS Pathogens, 9, 10,. 10.1371/journal.ppat.1003734
Mizan, S., Henk, A., Stallings, A., Maier, M., & Lee, M. (2000). Cloning and characterization of sialidases with 2-6' and 2-3' sialyl lactose specificity from Pasteurella multocida. Journal of Bacteriology, 182, 24, 6874-6883. 10.1128/JB.182.24.6874-6883.2000
Moore, K.E. & Gozani, O. (2014). An Unexpected Journey: Lysine Methylation Across the Proteome. Biochimica et Biophysica Acta, 1839-1851. 10.1016/j.bbagrm.2014.02.008
Mukherjee, P. & Mani, S. (2013). Methodologies to decipher the cell secretome. Biochimica et Biophysica Acta, 1834, 11, 2226-2232. 10.1016/j.bbapap.2013.01.022
Neurath, H. (1989). Proteolytic processing and physiological regulation. Trends in Biochemistry Science, 14, 7, 268-71. 10.1016/0968-0004(89)90061-3
Niebisch, A., Kabus, A., Schultz, C., Weil, B., & Bott, M. (2006). Corynebacterial Protein Kinase G Controls 2-Oxoglutarate Dehydrogenase Activity via the Phosphorylation Status of the OdhI Protein. Journal of Biological Chemistry, 281, 18, 12300-12307. 10.1074/jbc.M512515200
Nikolaki, S. & Tsiamis, G. (2013). Microbial diversity in the era of omic technologies. BioMed Research International, 2013:958719. 10.1155/2013/958719
Nolen, B., Taylor, S. & Ghosh G. (2005). Regulation of protein kinases; controlling activity through activation segment conformation. Molecular Cell, 15, 5, 661-675. 10.1016/j.molcel.2004.08.024
Osaki M., Arcondéguy, T., Bastide, A., Touriol, C., Prats, H., & Trombe, M .C. (2009). The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. Journal of Bacteriology, 191, 15, 4943-50. 10.1128/JB.00196-09
Paton, J. C., Andrew, P. W., Boulnois, G. J., & Mitchell, T. J. (1993). Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annual Review of Microbiology, 47, 89-115. 10.1146/annurev.mi.47.100193.000513
Pereira, S. F., Goss, L. & Dworkin, J. (2011). Eukaryote-Like Serine/Threonine Kinases and Phosphatases in Bacteria. Microbiology and Molecular Biology Reviews., 75, 1, 192-212. 10.1128/MMBR.00042-10
Pérez, J., Castañeda-García, A., Jenke-Kodama, H., Müller, R., & Muñoz-Dorado, J. (2008). Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. National Academy of Sciences of the United States of America, 105, 41, 15950-19955. 10.1073/pnas.0806851105
Postma, P .W. & Lengeler, J. W. (1985). Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiology Reviews, 49, 3, 232-69. 10.1128/mr.49.3.232-269.1985
Prachi, P., Donati. C; Masciopinto, F., Rappuoli, R., & Bagnoli, F. (2013). Deep sequencing in pre- and clinical vaccine research. Public Health Genomics, 16, 1-2, 62-68. 10.1159/000345611
Raynal, J.T., Bastos, B.L., Vilas-Boas, P.C.B., Sousa, T.J., Costa-Silva, M., De Sá, M.C.A., Portela, R.W., Moura-Costa, L.F., Azevedo, V., & Meyer, R. (2018). Identification of membrane-associated proteins withpathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum. BMC Research Notes, 11, 73. 10.31533/pubvet.v13n8a391.1-7
Rowland, J. L. & Niederweis, M. (2012). Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb), 92, 3, 202-210. 10.1016/j.tube.2011.12.006
Ruggiero, A., De Simone, P., Smaldone, G., Squeglia, F., & Berisio, R. (2012). Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Current Protein & Peptide Science, 13, 8, 756-766. 10.2174/138920312804871201
Sá, M. C. A; Silva, W. M. Da; Rodrigues, C .C., Rezende, C. P., Marchioro, S. B., Filho, J. T. R., Sousa, T, J., Oliveira, H. P., Figueiredo, H .C. P., Portela, R. P., Castro, T. L; Azevedo, V., Seyffert, N., & Meyer, R. (2021). Comparative Proteomic Analyses Between Biofilm-Forming and Non-biofilm-Forming Strains of Corynebacterium pseudotuberculosis Isolated From Goats. Frontiers In Veterinary Science, 8, 1-10. 10.3389/fvets.2021.614011
Safavi, F. & Rostami, A. (2012). Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Experimental and Molecular Pathology, 93, 3, 428-433. 10.1016/j.yexmp.2012.09.014
Sansone, A., Watson, P. R., Wallis, T. S., Langford, P. R., & Kroll, J. S. (2002). The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Microbiology, 148, 3, 719-726. 10.1099/00221287-148-3-719
Sickmann, A. & Meyer, H.E. (2001). Phosphoamino acid analysis. Proteomics, 1, 2, 200-206. 10.1002/1615-9861(200102)1:2<200::AID-PROT200>3.0.CO;2-V
Songer, J. G. (1997). Bacterial phospholipases and their role in virulence. Trends in Microbiology, 5, 4, 156. 10.1016/S0966-842X(97)01005-6
Songer, J. G. (1988). Biochemical and genetic characterization of Corynebacterium pseudotuberculosis. American Journal of Veterinary Research, 49, 2, 223-6.
Stafford, G., Roy, S., Honma, K., & Sharma, A. (2012). Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Molecular Oral Microbiology, 27, 1, 11-22. 10.1111/j.2041-1014.2011.00630.x
Suo, Y., Huang, Y., Liu, Y., Shi, C., & Shi, X. (2012). The expression of superoxide dismutase (SOD) and a putative transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G. PloS One, 7, 10. 10.1371/journal.pone.0048467
Tachedjian, M., Krywult, J., Moore, R. J., & Hodgson, A. L. (1995). Caseous lymphadenitis vaccine development: site-specific inactivation of the Corynebacterium pseudotuberculosis phospholipase D gene. Vaccine, 13, 18, 1785-1792. 10.1016/0264-410x(95)00144-p
Tonello, F. & Zornetta, I. (2012). Bacillus anthracis factors for phagosomal escape. Toxins (Basel), 4, 7, 536-553. 10.3390/toxins4070536
Tong, H. H., Li, D., Chen, S., Long, J. P., & Demaria, T. F. (2005). Immunization with recombinant Streptococcus pneumoniae neuraminidase NanA protects chinchillas against nasopharyngeal colonization. Infection and Immunity, 73, 11, 7775-8777. 10.1128/IAI.73.11.7775-7778.2005
Trost, E., Ott, L., Schneider, J., Schröder, J., Jaenicke, S., Goesmann, A., Husemann, P., Stoye, J., Dorella, F.A., Rocha, F.S., Soares, S.C., D'afonseca, V., Miyoshi, A., Ruiz, J., Silva, A., Azevedo, V., Burkovski, A., Guiso, N., Join-Lambert, O.F., Kayal, S., & Tauch, A. (2010). The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics, 11, 728. 10.1186/1471-2164-11-728
Unanian, M. M., Feliciano-Silva, A. E. D., & Pant, K. P. (1985). Abscesses and caseous lymphadenitis in goats in tropical semi-arid northeast Brazil. Tropical Animal Health and Production, 17, 1, 57-62. 10.1007/BF02356137
Usuda Y., Tujimoto, N., Abe, C., Asakura, Y., Kimura, E., Kawahara, Y., Kurahashi, O., & Matsui, H. (1996). Molecular cloning of the Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology, 142 , 12, 3347-3354. 10.1099/13500872-142-12-3347
Walker, J., Jackson, H. J., Eggleton, D. G., Meeusen, E. N., Wilson, M. J., & Brandon, M. R. (1994). Identification of a novel antigen from Corynebacterium pseudotuberculosis that protects sheep against caseous lymphadenitis. Infection and Immunity, 62, 6, 2562-2567. 10.1128/iai.62.6.2562-2567.1994
Whitmore, S. E. & Lamont, R. J. (2012). Tyrosine phosphorylation and bacterial virulence. International Journal of Oral Science, 4, 1, 1-6. 10.1038/ijos.2012.6
Wilson, M. J., Brandon, M. R. & Walker, J. (1995). Molecular and biochemical characterization of a protective 40-kilodalton antigen from Corynebacterium pseudotuberculosis. Infection and Immunity, 63, 1, 206-211. 10.1128/iai.63.1.206-211.1995
Windsor, P. A. (s.d). Control of caseous lymphadenitis. Veterinary Clinics of North America: Food Animal Practice, 27, 1, 193-202. 10.1016/j.cvfa.2010.10.019
Wu, C. H., Tsai-Wu, J. J., Huang, Y. T., Lin, C. Y., Lioua, G. G., & Lee, F.J. (1998). Identification and subcellular localization of a novel Cu/Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Letters, 439, 1-2, 192-196. 10.1016/s0014-5793(98)01373-8
Yeats, C., Finn, R. D. & Bateman, A. (2002). The PASTA domain: a β-lactam-binding domain. Trends in Biochemical Sciences, 27, 9, 438-440. 10.1016/s0968-0004(02)02164-3
Yozwiak, M. L., Songer, J.G. (1993). Effect of Corynebacterium pseudotuberculosis phospholipase D on viability and chemotactic response of ovine neutrophils. American Journal of Veterinary Research, 54, 3, 392-7
Zhu, L. & Kreth, J. (2010). Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Archives of Oral Biology, 55, 5, 385-90. 10.1016/j.archoralbio.2010.03.012
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Jefferson Ivan Corrêa; José Tadeu Raynal Rocha Filho; Bruno Lopes Bastos; Daniel Menezes Bonaspetti; Júlia Maria Guimarães Matos; Ezequiel Fabiane Spanholi; Antonio Pedro Fróes de Farias; Lília Ferreira de Moura-Costa; Soraya Castro Trindade; Roberto José Meyer Nascimento
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.