La susceptibilidad del COVID-19 a un peor pronóstico en presencia del síndrome
DOI:
https://doi.org/10.33448/rsd-v11i14.36329Palabras clave:
Pandemias; Coronavirus; Hipertensión; Glucemia; Triglicéridos; Obesidad.Resumen
COVID-19 tiene manifestaciones clínicas variables, que van desde un portador asintomático, enfermedad respiratoria leve, neumonía, síndrome de dificultad respiratoria aguda (SDRA), fallo orgánico múltiple e incluso la muerte. Algunos ejemplos importantes de comorbilidades que pueden empeorar el desarrollo de la enfermedad son los componentes del síndrome metabólico (SM), como la hipertensión, la diabetes mellitus tipo 2 (DM2) y la obesidad. El presente estudio tenía como objetivo evaluar la susceptibilidad de los casos de COVID-19 en pacientes con o sin criterios característicos de la EM. Se trata de un estudio analítico transversal con un enfoque cuantitativo basado en los datos de una muestra de individuos atendidos en el Hospital Militar de Policía (HPM). Los resultados fueron: El 43% de los pacientes con EM estaban infectados por SARS-CoV-2 (p < 0,05); de todos los infectados, el 50,56% estaban clasificados por el IMC con obesidad, el 40,90% con glucosa en ayunas > 99 mg/dL, el 43,50% con HDL-c por debajo del valor de normalidad, el 39,91% con triglicéridos por encima del valor de normalidad, el 41,94% en uso de antihipertensivos, el 40,74% en uso de hipoglucemiantes y el 32,89% en uso de hipolipemiantes. Los datos adquiridos y analizados permitieron concluir que los pacientes con EM tienen un mayor riesgo de contraer COVID-19.
Citas
Alamdari, N. M., Rahimi, F. S., Afaghi, S., Zarghi, A., Qaderi, S., Tarki, F. E., Ghafouri, S. R., & Besharat, S. (2020). The impact of metabolic syndrome on morbidity and mortality among intensive care unit admitted COVID-19 patients. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(6), 1979–1986. https://doi.org/10.1016/j.dsx.2020.10.012
Atlas, D. (2014). Voltage-gated calcium channels function as Ca2+-activated signaling receptors. Trends in Biochemical Sciences, 39(2), 45–52. https://doi.org/10.1016/j.tibs.2013.12.005
Bansal, R., Gubbi, S., & Muniyappa, R. (2020). Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology, 161(10). https://doi.org/10.1210/endocr/bqaa112
Bernstein, K. E., Khan, Z., Giani, J. F., Cao, D.-Y., Bernstein, E. A., & Shen, X. Z. (2018). Angiotensin-converting enzyme in innate and adaptive immunity. Nature Reviews Nephrology, 14(5), 325–336. https://doi.org/10.1038/nrneph.2018.15
Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L., Tobi, A., Kallio-Kokko, H., Österlund, P., Joensuu, M., Meunier, F. A., Butcher, S. J., … Simons, M. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518), 856–860. https://doi.org/10.1126/science.abd2985
Catapano, A. L., Pirillo, A., Bonacina, F., & Norata, G. D. (2014). HDL in innate and adaptive immunity. Cardiovascular Research, 103(3), 372–383. https://doi.org/10.1093/cvr/cvu150
Chang, D., Xu, H., Rebaza, A., Sharma, L., & Dela Cruz, C. S. (2020). Protecting health-care workers from subclinical coronavirus infection. The Lancet Respiratory Medicine, 8(3), e13. https://doi.org/10.1016/S2213-2600(20)30066-7
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Cho, D.-H., Choi, J., & Gwon, J. G. (2021). Metabolic syndrome and the risk of COVID-19 infection: A nationwide population-based case-control study. Nutrition, Metabolism and Cardiovascular Diseases, 31(9), 2596–2604. https://doi.org/10.1016/j.numecd.2021.05.016
Cho, K.-H., Kim, J.-R., Lee, I.-C., & Kwon, H.-J. (2021). Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity. Antioxidants, 10(2), 209. https://doi.org/10.3390/antiox10020209
Deng, G., Yin, M., Chen, X., & Zeng, F. (2020). Clinical determinants for fatality of 44,672 patients with COVID-19. Critical Care, 24(1), 179. https://doi.org/10.1186/s13054-020-02902-w
Denson, J. L., Gillet, A. S., Zu, Y., Brown, M., Pham, T., Yoshida, Y., Mauvais-Jarvis, F., Douglas, I. S., Moore, M., Tea, K., Wetherbie, A., Stevens, R., Lefante, J., Shaffer, J. G., Armaignac, D. L., Belden, K. A., Kaufman, M., Heavner, S. F., Danesh, V. C., … Gautam, S. (2021). Metabolic Syndrome and Acute Respiratory Distress Syndrome in Hospitalized Patients With COVID-19. JAMA Network Open, 4(12), e2140568. https://doi.org/10.1001/jamanetworkopen.2021.40568
Engin, A. B., Engin, E. D., & Engin, A. (2020). Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking. Environmental Toxicology and Pharmacology, 78, 103411. https://doi.org/10.1016/j.etap.2020.103411
Ghosh, A., Anjana, R. M., Shanthi Rani, C. S., Jeba Rani, S., Gupta, R., Jha, A., Gupta, V., Kuchay, M. S., Luthra, A., Durrani, S., Dutta, K., Tyagi, K., Unnikrishnan, R., Srivastava, B. K., Ramu, M., Sastry, N. G., Gupta, P. K., Umasankari, G., Jayashri, R., … Misra, A. (2021). Glycemic parameters in patients with new-onset diabetes during COVID-19 pandemic are more severe than in patients with new-onset diabetes before the pandemic: NOD COVID India Study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 215–220. https://doi.org/10.1016/j.dsx.2020.12.033
Gordon, S. M., Hofmann, S., Askew, D. S., & Davidson, W. S. (2011). High density lipoprotein: it’s not just about lipid transport anymore. Trends in Endocrinology & Metabolism, 22(1), 9–15. https://doi.org/10.1016/j.tem.2010.10.001
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., … Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
Hariyanto, T. I., & Kurniawan, A. (2020). Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1463–1465. https://doi.org/10.1016/j.dsx.2020.07.054
Higham, A., & Singh, D. (2020). Increased ACE2 Expression in Bronchial Epithelium of COPD Patients who are Overweight. Obesity, 28(9), 1586–1589. https://doi.org/10.1002/oby.22907
Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C., & Ketheesan, N. (2015). Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology, 144(2), 171–185. https://doi.org/10.1111/imm.12394
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
I Diretriz Brasileira de Diagnóstico e Tratamento da Síndrome Metabólica. (2005). Arquivos Brasileiros de Cardiologia, 84, 3–28. https://doi.org/10.1590/S0066-782X2005000700001
Kane, J. P., Hardman, D. A., Dimpfl, J. C., & Levy, J. A. (1979). Apolipoprotein is responsible for neutralization of xenotropic type C virus by mouse serum. Proceedings of the National Academy of Sciences, 76(11), 5957–5961. https://doi.org/10.1073/pnas.76.11.5957
Karathanasis, S. K., Freeman, L. A., Gordon, S. M., & Remaley, A. T. (2017). The Changing Face of HDL and the Best Way to Measure It. Clinical Chemistry, 63(1), 196–210. https://doi.org/10.1373/clinchem.2016.257725
Khovidhunkit, W., Kim, M.-S., Memon, R. A., Shigenaga, J. K., Moser, A. H., Feingold, K. R., & Grunfeld, C. (2004a). Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. Journal of Lipid Research, 45(7), 1169–1196. https://doi.org/10.1194/jlr.R300019-JLR200
Khovidhunkit, W., Kim, M.-S., Memon, R. A., Shigenaga, J. K., Moser, A. H., Feingold, K. R., & Grunfeld, C. (2004b). Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. Journal of Lipid Research, 45(7), 1169–1196. https://doi.org/10.1194/jlr.R300019-JLR200
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., & Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172(9), 577–582. https://doi.org/10.7326/M20-0504
Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z., & Zhao, Y. (2020). Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology, 109(5), 531–538. https://doi.org/10.1007/s00392-020-01626-9
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
Lohia, P., Kapur, S., Benjaram, S., Pandey, A., Mir, T., & Seyoum, B. (2021). Metabolic syndrome and clinical outcomes in patients infected with COVID‐19: Does age, sex, and race of the patient with metabolic syndrome matter? Journal of Diabetes, 13(5), 420–429. https://doi.org/10.1111/1753-0407.13157
Longmore, D. K., Miller, J. E., Bekkering, S., Saner, C., Mifsud, E., Zhu, Y., Saffery, R., Nichol, A., Colditz, G., Short, K. R., Burgner, D. P., Anfasa, F., Benfield, T. L., Blaauw, M. J. T., Boonman-de Winter, L. J. M., Brucato, A. L., Buanes, E. A., Burhan, E., Calabro, E., … Young, B. E. (2021). Diabetes and Overweight/Obesity Are Independent, Nonadditive Risk Factors for In-Hospital Severity of COVID-19: An International, Multicenter Retrospective Meta-analysis. Diabetes Care, 44(6), 1281–1290. https://doi.org/10.2337/dc20-2676
Madsen, C. M., Varbo, A., Tybjærg-Hansen, A., Frikke-Schmidt, R., & Nordestgaard, B. G. (2018). U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. European Heart Journal, 39(14), 1181–1190. https://doi.org/10.1093/eurheartj/ehx665
Masana, L., Correig, E., Ibarretxe, D., Anoro, E., Arroyo, J. A., Jericó, C., Guerrero, C., Miret, M., Näf, S., Pardo, A., Perea, V., Pérez-Bernalte, R., Plana, N., Ramírez-Montesinos, R., Royuela, M., Soler, C., Urquizu-Padilla, M., Zamora, A., & Pedro-Botet, J. (2021). Low HDL and high triglycerides predict COVID-19 severity. Scientific Reports, 11(1), 7217. https://doi.org/10.1038/s41598-021-86747-5
Misra, A., Ghosh, A., & Gupta, R. (2021). Heterogeneity in presentation of hyperglycaemia during COVID-19 pandemic: A proposed classification. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 403–406. https://doi.org/10.1016/j.dsx.2021.01.018
Mizumoto, K., Kagaya, K., Zarebski, A., & Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 25(10). https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
Muniyappa, R., & Gubbi, S. (2020). COVID-19 pandemic, coronaviruses, and diabetes mellitus. American Journal of Physiology-Endocrinology and Metabolism, 318(5), E736–E741. https://doi.org/10.1152/ajpendo.00124.2020
Noveanu, M., Breidthardt, T., Reichlin, T., Gayat, E., Potocki, M., Pargger, H., Heise, A., Meissner, J., Twerenbold, R., Muravitskaya, N., Mebazaa, A., & Mueller, C. (2010). Effect of oral beta-blocker on short and long-term mortality in patients with acute respiratory failure: results from the BASEL-II-ICU study. Critical Care, 14(6), R198. https://doi.org/10.1186/cc9317
Onder, G., Rezza, G., & Brusaferro, S. (2020). Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. https://doi.org/10.1001/jama.2020.4683
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1a). UFMS.
Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O’Donnell, L., Chernyak, Y., Tobin, K. A., Cerfolio, R. J., Francois, F., & Horwitz, L. I. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ, m1966. https://doi.org/10.1136/bmj.m1966
Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J., & Rothblat, G. H. (2009). The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. Journal of Lipid Research, 50, S189–S194. https://doi.org/10.1194/jlr.R800088-JLR200
Raveendran, A. V., & Misra, A. (2021). Post COVID-19 Syndrome (“Long COVID”) and Diabetes: Challenges in Diagnosis and Management. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(5), 102235. https://doi.org/10.1016/j.dsx.2021.102235
Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., Barnaby, D. P., Becker, L. B., Chelico, J. D., Cohen, S. L., Cookingham, J., Coppa, K., Diefenbach, M. A., Dominello, A. J., Duer-Hefele, J., Falzon, L., Gitlin, J., Hajizadeh, N., Harvin, T. G., … Zanos, T. P. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA, 323(20), 2052. https://doi.org/10.1001/jama.2020.6775
Rudemiller, N. P., & Crowley, S. D. (2016). Interactions Between the Immune and the Renin–Angiotensin Systems in Hypertension. Hypertension, 68(2), 289–296. https://doi.org/10.1161/HYPERTENSIONAHA.116.06591
Scalsky, R. J., Desai, K., Chen, Y.-J., O’Connell, J. R., Perry, J. A., & Hong, C. C. (2020). Baseline Cardiometabolic Profiles and SARS-CoV-2 Risk in the UK Biobank. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2020.07.25.20161091
Serné, E. H., de Jongh, R. T., Eringa, E. C., IJzerman, R. G., & Stehouwer, C. D. A. (2007). Microvascular Dysfunction. Hypertension, 50(1), 204–211. https://doi.org/10.1161/HYPERTENSIONAHA.107.089680
Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., Jourdain, M., Caizzo, R., Caplan, M., Cousin, N., Duburcq, T., Durand, A., el kalioubie, A., Favory, R., Garcia, B., Girardie, P., … Verkindt, H. (2020). High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) Requiring Invasive Mechanical Ventilation. Obesity, 28(7), 1195–1199. https://doi.org/10.1002/oby.22831
Singh, I. P., Chopra, A. K., Coppenhaver, D. H., Ananatharamaiah, G. M., & Baron, S. (1999). Lipoproteins account for part of the broad non-specific antiviral activity of human serum. Antiviral Research, 42(3), 211–218. https://doi.org/10.1016/S0166-3542(99)00032-7
Srinivas, R. V., Birkedal, B., Owens, R. J., Anantharamaiah, G. M., Segrest, J. P., & Compans, R. W. (1990). Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs. Virology, 176(1), 48–57. https://doi.org/10.1016/0042-6822(90)90229-K
Straus, M. R., Tang, T., Lai, A. L., Flegel, A., Bidon, M., Freed, J. H., Daniel, S., & Whittaker, G. R. (2020). Ca2+ Ions Promote Fusion of Middle East Respiratory Syndrome Coronavirus with Host Cells and Increase Infectivity. Journal of Virology, 94(13). https://doi.org/10.1128/JVI.00426-20
Swamy, S., Koch, C. A., Hannah-Shmouni, F., Schiffrin, E. L., Klubo-Gwiezdzinska, J., & Gubbi, S. (2022). Hypertension and COVID-19: Updates from the era of vaccines and variants. Journal of Clinical & Translational Endocrinology, 27, 100285. https://doi.org/10.1016/j.jcte.2021.100285
Tan, K., Harazim, M., Tang, B., Mclean, A., & Nalos, M. (2019). The association between premorbid beta blocker exposure and mortality in sepsis—a systematic review. Critical Care, 23(1), 298. https://doi.org/10.1186/s13054-019-2562-y
Trinder, M., Walley, K. R., Boyd, J. H., & Brunham, L. R. (2020). Causal Inference for Genetically Determined Levels of High-Density Lipoprotein Cholesterol and Risk of Infectious Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(1), 267–278. https://doi.org/10.1161/ATVBAHA.119.313381
Unnikrishnan, R., & Misra, A. (2021). Diabetes and COVID19: a bidirectional relationship. Nutrition & Diabetes, 11(1), 21. https://doi.org/10.1038/s41387-021-00163-2
Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J. J. V., Pfeffer, M. A., & Solomon, S. D. (2020). Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine, 382(17), 1653–1659. https://doi.org/10.1056/NEJMsr2005760
Vasanthakumar, N. (2020). Can beta-adrenergic blockers be used in the treatment of COVID-19? Medical Hypotheses, 142, 109809. https://doi.org/10.1016/j.mehy.2020.109809
Wargny, M., Gourdy, P., Ludwig, L., Seret-Bégué, D., Bourron, O., Darmon, P., Amadou, C., Pichelin, M., Potier, L., Thivolet, C., Gautier, J.-F., Hadjadj, S., Cariou, B., Wargny, M., Mahot, P., Cariou, B., Hadjadj, S., Pichelin, M., Fournier-Guilloux, A.-L., … Paradisi-Prieur, L. (2020). Type 1 Diabetes in People Hospitalized for COVID-19: New Insights From the CORONADO Study. Diabetes Care, 43(11), e174–e177. https://doi.org/10.2337/dc20-1217
Wilczynski, S. A., Wenceslau, C. F., McCarthy, C. G., & Webb, R. C. (2021). A Cytokine/Bradykinin Storm Comparison: What Is the Relationship Between Hypertension and COVID-19? American Journal of Hypertension, 34(4), 304–306. https://doi.org/10.1093/ajh/hpaa217
Williamson, E., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., Curtis, H. J., Mehrkar, A., Evans, D., Inglesby, P., Cockburn, J., McDonald, H. I., MacKenna, B., Tomlinson, L., Douglas, I. J., Rentsch, C. T., Mathur, R., Wong, A., Grieve, R., … Goldacre, B. (2020). penSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. MedRxiv.
Xie, J., Zu, Y., Alkhatib, A., Pham, T. T., Gill, F., Jang, A., Radosta, S., Chaaya, G., Myers, L., Zifodya, J. S., Bojanowski, C. M., Marrouche, N. F., Mauvais-Jarvis, F., & Denson, J. L. (2021). Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans. Diabetes Care, 44(1), 188–193. https://doi.org/10.2337/dc20-1714
Yanai, H. (2020). Metabolic Syndrome and COVID-19. Cardiology Research, 11(6), 360–365. https://doi.org/10.14740/cr1181
Zhu, L., She, Z.-G., Cheng, X., Qin, J.-J., Zhang, X.-J., Cai, J., Lei, F., Wang, H., Xie, J., Wang, W., Li, H., Zhang, P., Song, X., Chen, X., Xiang, M., Zhang, C., Bai, L., Xiang, D., Chen, M.-M., … Li, H. (2020). Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 31(6), 1068-1077.e3. https://doi.org/10.1016/j.cmet.2020.04.021
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Camila Puton; Ricelly Pires Vieira; Clayson Moura Gomes; Sérgio Henrique Nascente Costa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.