Accesibilidad del selenio después de simulación gastrointestinal in vitro en genotipos de arroz biofortificado con selenio

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i16.36349

Palabras clave:

Oryza sativa L.; Selenato de sodio; Simulación gastrointestinal in vitro; Digestión; Etnovariedades.

Resumen

La biofortificación con selenio es una estrategia agronómica que tiene como objetivo aumentar los niveles de este mineral en los alimentos. Sin embargo, además de la cantidad de selenio (Se) en la planta, también es necesario evaluar qué cantidad del elemento deseable presente en el alimento estaría disponible para ser asimilado por el organismo. Considerando el alto consumo mundial de arroz y la eficiencia demostrada por el arroz en estudios de biofortificación, el objetivo de esta investigación fue evaluar la producción y el contenido de Se de los granos de arroz, el contenido de fenoles totales y la accesibilidad al selenio de tres variedades de arroz (Oryza sativa L.) biofortificado con selenio. Se utilizaron dos etnovariedades del pantano Mato-Grossense (Branquinho y Agulhinha Vermelho) y un cultivar comercial (Esmeralda), agronómicamente biofortificados con selenato de sodio (50 g ha-1). Se evaluaron los siguientes parámetros: rendimiento de grano (g planta-1), concentración de Se total (µg 100 g-1 grano), fenoles totales (µg EAG 100 g-1 MS), concentración de Se después de TGI (in vitro) y accesibilidad (%) de Se. Las etnovariedades Agulhinha Vermelho y Branquinho presentaron mayor productividad, concentración de Se total en granos crudos y concentración de Se después de TGI. El cultivar comercial Esmeralda presentó la mayor concentración de fenoles totales y el porcentaje de accesibilidad de Se, sin embargo todos los genotipos presentaron accesibilidad de Se superior al 60%.

Biografía del autor/a

Ana Cássia Silva Possamai, Universidade do Estado de Mato Grosso

Universidade do Estado de Mato Grosso - UNEMAT, Campus de Nova Mutum - MT

Faculdade de Ciências Sociais, Aplicadas e Agrárias.

Francisco de Almeida Lobo, Universidade Federal de Mato Grosso

Universidade Federal de Mato Grosso – UFMT

Faculdade de Agronomia e Zootecnia

Departamento de Solos e Engenharia Rural

 

Maressa Caldeira Morzelle, Universidade Federal de Mato Grosso

Universidade Federal de Mato Grosso - UFMT

Faculdade de Nutrição - FANUT.

Citas

Buriti, F. C. A., Castro, I. A., & Saad, S. M. I. (2010). Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. International Journal of Food Microbiology, 137 (2–3), 121–129. https://doi.org/10.1016/j.ijfoodmicro.2009.11.030

Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., Lammel, J., & Broadley, M. R. (2011). widespread in Malawi. 1–9. https://doi.org/10.1038/srep00072

Delaqua, D., Carnier, R., Cadore, S., Sanches, V. L., Berton, R. S., Corbi, F. C. A., & Coscione, A. R. (2022). In vitro bioaccessibility and bioavailability of selenium in agronomic biofortified wheat. Journal of Food Composition and Analysis, 105 (September 2021). https://doi.org/10.1016/j.jfca.2021.104253

Etcheverry, P., Grusak, M. A., & Fleige, L. E. (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B 6, B 12, D, and E. Frontiers in Physiology, 3 AUG (August), 1–22. https://doi.org/10.3389/fphys.2012.00317

Ferreira, D. F. (2019). SISVAR: A Computer Analysis System To Fixed Effects Split Plot Type Designs. Revista Brasileira De Biometria, 37 (4), 529-535. https://doi.org/10.28951/rbb.v37i4.450.

Gong, R., Ai, C., Zhang, B., & Cheng, X. (2018). Effect of selenite on organic selenium speciation and selenium bioaccessibility in rice grains of two Se-enriched rice cultivars. Food Chemistry, 264, 443–448. https://doi.org/10.1016/j.foodchem.2018.05.066

He, Y., & Zheng, Y. (2010). Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach. Science of the Total Environment, 408(6), 1430–1436. https://doi.org/10.1016/j.scitotenv.2009.12.043

Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14 (4), 367–382. https://doi.org/10.1016/j.dsx.2020.04.015

Keqin, P., Yahui, H., & Wei, X. (1997). Effect of selenium on the photosynthesis and yield of early rice Oryza sativa L. Journal of Hunan Agricultural University, 23 (5), 432-434.

Lessa, J. H. L., Araújo, A. M., Ferreira, L. A., da Silva Júnior, E. C., de Oliveira, C., Corguinha, A. P. B., Martins, F. A. D., de Carvalho, H. W. P., Guilherme, L. R. G., & Lopes, G. (2019). Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant and Soil, 444 (1–2), 331–342. https://doi.org/10.1007/s11104-019-04275-8

Madureira, A. R., Amorim, M., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2011). Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44 (1), 465–470. https://doi.org/10.1016/j.foodres.2010.09.010

Nothstein, A. K., Eiche, E., Riemann, M., Nick, P., Winkel, L. H. E., Göttlicher, J., Steininger, R., Brendel, R., Brasch, M. V., Konrad, G., & Neumann, T. (2016). Tracking Se Assimilation and Speciation through the Rice Plant – Nutrient Competition, Toxicity and Distribution. PLoS ONE, 11(4), 1-15. https://doi.org/10.1371/journal.pone.0152081

Paraginski, R. T., Ziegler, V., Talhamento, A., Elias, M. C., & Oliveira, M. de. (2014). Propriedades tecnológicas e de cocção em grãos de arroz condicionados em diferentes temperaturas antes da parboilização. Brazilian Journal of Food Technology, 17(2), 146–153. https://doi.org/10.1590/bjft.2014.021

Peixoto, R. R. A., Mazonb, E. A. M., & Cadore, S. (2013). Estimation of the Bioaccessibility of Metallic Elements in Chocolate Drink Powder using an in vitro Digestion Method and Spectrometric Techniques Rafaella. 24(10), 3–5.

Pereira, C. C., do Nascimento da Silva, E., de Souza, A. O., Vieira, M. A., Ribeiro, A. S., & Cadore, S. (2018). Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. Journal of Food Composition and Analysis, 68, 73–78. https://doi.org/10.1016/j.jfca.2016.12.001.

Pereira, M. P., & Tavano, O. L. (2014). Use of Different Spices as Potential Natural Antioxidant Additives on Cooked Beans (Phaseolus vulgaris). Increase of DPPH Radical Scavenging Activity and Total Phenolic Content. Plant Foods for Human Nutrition, 69(4), 337–343. https://doi.org/10.1007/s11130-014-0439-4

Possamai, A.C.S., Lobo, F.A., Previl, R., Blanger, B.R., Pereira,.R.S., Costa, M.P.C. (2022). Biofortificação Agronômica em Variedades de Arroz do Pantanal Mato-Grossense. Revista Ibero-Americana de Ciências Ambientais, (no prelo).

Schmitz, F.R.W., Samaniego-Sã, C., Tedeschi, P., Maietti, A., Shariati, M.A., Hleba, L., De Souza, C.K. (2021). Fatty acid profile and antioxidant capacity of Oryza sativa L. (Japônica subspecies) marketed in Italy and Brazil: a comparison. Journal of microbiology, biotechnology and food sciences, 11(1), 4842-4842. https://doi.org/10.15414/jmbfs.4842

Song, T., Su, X., He, J., Liang, Y., Zhou, T., & Liu, C. (2018). Selenium (Se) uptake and dynamic changes of Se content in soil–plant systems. Environmental Science and Pollution Research, 25(34), 34343–34350. https://doi.org/10.1007/s11356-018-3373-4

USDA. (2021). Report Name: Grain and Feed Update; Country: Bangladesh. USDA, Report Number: BG2021-0004, 21(December 2020), 0–3.

WHO. (2009). Global Health Risks.

Woisky R. G., Salatino A. (1998). Analysis os propolis: some parameters ond prodecore for chemical fuality control. Journal of Apicultural Research, 37(2), 99-105.

Verma, D.K., Srivastav, P.P. (2020). Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science & Technology, 97, 355-365. https://doi.org/10.1016/j.tifs.2020.01.007

Yan, J., Chen, X., Zhu, T., Zhang, Z., & Fan, J. (2021). Effects of selenium fertilizer application on yield and selenium accumulation characteristics of different Japonica rice varieties. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810284

Yin, H., Qi, Z., Li, M., Ahammed, G.J., Chu, X., Zhou, J. (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and environmental safety, 169, 911-917. https://doi.org/10.1016/j.ecoenv.2018.11.080

Publicado

13/12/2022

Cómo citar

POSSAMAI, A. C. S.; LOBO, F. de A.; PREVIN, R.; PERIUS, S. dos S. .; LIPAROTTI, J. de P.; MORZELLE, M. C.; DOMINGUES , Y. O. . .; TOMÁS, M. da G. Accesibilidad del selenio después de simulación gastrointestinal in vitro en genotipos de arroz biofortificado con selenio. Research, Society and Development, [S. l.], v. 11, n. 16, p. e427111636349, 2022. DOI: 10.33448/rsd-v11i16.36349. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36349. Acesso em: 2 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas