Isotermas de desorción de granos de sorgo granífero

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.3661

Palabras clave:

Sorghum bicolor L.; Actividad del agua; Higroscopicidad; Chung-Pfost.

Resumen

El sorgo granífero (Sorghum bicolor L.) es un cereal muy utilizado en alimentos procesados porque no contiene gluten, debido a la importancia de este grano es necesario definir condiciones seguras para el almacenamiento. Por lo tanto, el objetivo era determinar las isotermas de desorción para los granos de sorgo y determinar el contenido de agua segura para el almacenamiento de este producto. Las isotermas de desorción de grano se obtuvieron por el método estático indirecto, obteniendo la actividad de agua del producto a temperaturas de 10, 20, 30 y 40 ºC, para el rango de contenido de agua entre 14 a 24 ± 0.1 % en base seca. Los modelos matemáticos utilizados para representar la higroscopicidad de los productos agrícolas se ajustaron a los datos experimentales. Para verificar el grado de ajuste de los modelos, se consideró la magnitud del coeficiente de determinación, la prueba de Chi-cuadrado, el error medio relativo, el error medio estimado, los criterios de información de Akaike (AIC) y los criterios de información bayesianos de Schwarz (BIC). Todos los modelos representan satisfactoriamente las isotermas de desorción, sin embargo, de acuerdo con los parámetros evaluados, el modelo Chung-Pfost fue el más apropiado. Para el almacenamiento de granos de sorgo, el límite máximo de contenido de agua es 15.69; 15.08; 14,53; 14.03% b.s., para temperaturas de 10, 20, 30 y 40 ºC, respectivamente.

Citas

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction on Automatic Control, 19(6), 716-723. doi: https://doi.org/10.1109/TAC.1974.1100705

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria Nacional de defesa Agropecuária. Regras para Análise de Sementes. Brasília: Mapa/ACS 2009. 398p.

Brasil (2019). Acompanhamento de safra brasileira – Grãos, Safra 2018/19. Oitavo Levantamento. Brasília: Conab.

Borges, S.; Borges, E. E. L.; Corrêa, P. C.; Brune, A. (2009). Equilíbrio higroscópico e viabilidade de sementes de angico-vermelho (Anadenanthera peregrina (L.) Speng) em diferentes condições ambientais de armazenamento. Scientia Forestalis, 37(3), 475-481. Acessado em: https://www.ipef.br/publicacoes/scientia/nr84/cap15.pdf

Caetano, G. S.; Sousa, K. A.; Resende, O.; Sales, J. F.; Costa, L. M. (2012). Higroscopicidade de sementes de caju-de-árvore-do-cerrado. Pesquisa Agropecuária Tropical, 42(4), 437-445. doi: https://doi.org/10.1590/S1983-40632012000400012

Campos, R. C.; Corrêa, P. C.; Zaidan, I. R.; Zaidan, U. R.; Leite, R. A. (2019). Moisture sorption isotherms of sunflower seeds: Thermodynamic analysis. Ciência e Agrotecnologia, 43, e011619. doi: https://doi.org/10.1590/1413-7054201943011619

Corrêa, P. C.; Resende, O.; Ribeiro, D. M. (2005). Isotermas de sorção das espigas de milho: obtenção e Modelagem. Revista Brasileira de Milho e Sorgo, 4(1), 126-134. doi: https://doi.org/10.18512/1980-6477/rbms.v4n01p%25p

Corrêa, P. C.; Botelho, F. M; Botelho, S. C. C.; Goneli, A. L. D. (2014). Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 1047-1052. doi: https://doi.org/10.1590/1807-1929/agriambi.v18n10p1047-1052

Corrêa, P. C.; Reis, M. F. T.; Oliveira, G. H. H.; Oliveira, A. P. L. R.; Botelho, F. M. (2015). Moisture desorption isotherms of cucumber seeds: Modeling and thermodynamic properties. Journal of Seed Science, 37(1), 218-225. doi: https://doi.org/10.1590/2317-1545v37n3149549

Costa, L. M.; Resende, O.; Oliveira, D. E. C. (2013). Isotermas de dessorção e calor isostérico dos frutos de crambe. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(4), 412-418. doi: https://doi.org/10.1590/S1415-43662013000400009

Dykes, L.; Rooney, L. W.; Waniska, R. D.; Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry, 53(17), 6813-6818. doi: https://doi.org/10.1021/jf050419e

Ferreira Junior, W. N.; Resende, O.; Oliveira, D. E. C.; Costa, L. M. (2018). Isotherms and isosteric heat desorption of Hymenaea stigonocarpa Mart. seeds. Journal of Agricultural Science, 10(10), 504-512. doi: http://dx.doi.org/10.5539/jas.v10n10p504

Gomes, F. P.; Resende, O.; Sousa, E. P.; Oliveira, D. E. C.; Araújo Neto, F. R. (2018). Drying kinetics of crushed mass of ‘jambu’: Effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. doi: https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505

Granella, S. J.; Bechlin, T. R.; Christ, D.; Werncke, I. (2019). Isotermas e calor isostérico de dessorção da água em sementes de trigo. Revista Engenharia na Agricultura, 27(4), 304-312.

doi: https://doi.org/10.13083/reveng.v27i4.891

Günhan, T.; Demir, V.; Hancioglu, E.; Hepbasli, A. (2005). Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11-12), 1667-1679. doi: https://doi.org/10.1016/j.enconman.2004.10.001

Isquierdo, E. P.; Siqueira, V. C.; Borém, F. M.; Andrade, E. T.; Luz, P. B.; Quequeto, W. D. (2020). Isotermas de sorção e propriedades termodinâmicas de sementes de maracujá doce. Research, Research, Society and Development, 9(5), e44952884. doi: http://dx.doi.org/10.33448/rsd-v9i3.2884

Madamba, P. S.; Driscoll, R. H.; Bruckle, K. A. (1996). Thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. doi: https://doi.org/10.1016/0260-8774(95)00062-3

Méndez-Albores, A.; Martínez-Bustos, F.; Véles-Medina, J. J.; Moreno-Ramos, C.; Del Río-García, J. C.; Moreno-Martínez, E. (2009). Efecto de la adición de ácido cítrico sobre la degradación de las aflatoxinas y las propiedades funcionales de productos extrudidos de sorgo. Interciencia, 24(4), 252-258.

Mutisya, J.; Sun, C.; Rosenquist, S.; Baguma, Y.; Jansson, C. (2009). Diurnal oscillation of SBE expression in sorghum endosperm. Journal of Plant Physiology, 166(4), 428-434. doi: http://dx.doi.org/10.1016/j.jplph.2008.06.017

Quequeto, W. D.; Resende, O.; Silva, P. C.; Silva, F. A. Z.; Silva, L. C. M. (2019). Drying kinetics of noni seeds. Journal of Agricultural Science, 11(5), 250-258. doi: http://dx.doi.org/10.5539/jas.v11n5p250

Oliveira, M. M.; Campos, A. R. N.; Gomes, J. P.; Silva, F. L. H. (2005). Isotermas de sorção do resíduo agroindustrial de casca do abacaxi (Ananas comosus L. Mer). Revista Brasileira de Engenharia Agrícola e Ambiental, 9(4), 565-569. doi: https://doi.org/10.1590/S1415-43662005000400020

Oliveira, D. E. C; Resende, O.; Smaniotto, T. A. S.; Sousa, K. A.; Campos, R. C. (2013). Propriedades termodinâmicas de grãos de milho para diferentes teores de água de equilíbrio. Pesquisa Agropecuária Tropical, 43(1), 50-56. doi: http://dx.doi.org/10.1590/S1983-40632013000100007

Oliveira, D. E. C; Resende, O. Campos, R. C.; Donadon, J. R. (2014) - Obtenção e modelagem das isotermas de dessorção e do calor isostérico para sementes de arroz em casca. Científica, 42(3), 203-210. doi: http://dx.doi.org/10.15361/1984-5529.2014v42n3p203-210

Resende, O.; Corrêa, P.C.; Goneli, A. L. D.; Botelho, F. M.; Rodrigues, S. (2008). Modelagem matemática do processo de secagem de duas variedades de feijão (Phaseolus vulgaris L.). Revista Brasileira de Produtos Agroindustriais, 10(1), 17-26. doi: http://dx.doi.org/10.15871/1517-8595/rbpa.v10n1p17-26

Rooney, L. W. (2007). Food and nutritional quality of sorghum and millet. Nebraska: INTSORMIL, 2007.

Santos, S. G. F.; Silva, H. W.; Queiroz, J. S.; Rodovalho, R. S.; Morgado, V. N. M. (2020). Isotermas de adsorção e calor latente de vaporização de grãos de milho. Científica, 48(1), 17-24. doi: http://dx.doi.org/10.15361/1984-5529.2020v48n1p17-24

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. doi: http://dx.doi.org/10.1214/aos/1176344136

Silva, H. W.; Costa, L. M.; Resende, O.; Oliveira, D. E. C.; Soares, R. S.; Vale, L. S. R. (2015). Higroscopicidade das sementes de pimenta (Capsicum chinense L.). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(8), 780-784. doi: https://doi.org/10.1590/1807-1929/agriambi.v19n8p780-784

Smaniotto, T. A. S.; Resende, O.; Oliveira, D. E. C.; Sousa, K. A.; Campos, R. C. (2012). Isotermas e calor latente de dessorção dos grãos de milho da cultivar AG 7088. Revista Brasileira de Milho e Sorgo, 11(3), 312-322. doi: https://doi.org/10.18512/1980-6477/rbms.v11n3p312-322

Sousa, K. A.; Resende, O.; Carvalho, B. S. (2016). Determination of desorption isotherms, latent heat and isosteric heat of pequi diaspore. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(5), 493-498. doi: https://doi.org/10.1590/1807-1929/agriambi.v20n5p493-498

Sousa, D. G.; Resende, O.; Moura, L. C.; Ferreira Junior, W. N.; Andrade, J. W. S. (2019). Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, 39(2), 176-181. doi: http://dx.doi.org/10.1590/1809-4430-eng.agric.v39n2p176-181/2019

Ullmann, R.; Resende, O.; Oliveira, D. E. C.; Costa, L. M.; Chaves, T. H. (2016). Higroscopicidade das sementes de sorgo-sacarino. Engenharia Agrícola, 36(3), 515-524. doi: https://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p515-524/2016

Publicado

22/05/2020

Cómo citar

FONSECA, N. N.; RESENDE, O.; FERREIRA JUNIOR, W. N.; SILVA, L. C. de M.; ANDRADE, Érika G.; OLIVEIRA, L. P. de. Isotermas de desorción de granos de sorgo granífero. Research, Society and Development, [S. l.], v. 9, n. 7, p. e466973661, 2020. DOI: 10.33448/rsd-v9i7.3661. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3661. Acesso em: 18 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas