Evaluación de la biofuncionalidad de la adición de plata sobre superficie anodizada de acero AISI 316L

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i15.37037

Palabras clave:

Anodizado; Biomateriales; Acero inoxidable AISI 316L.

Resumen

El acero inoxidable austenítico AISI 316L es un material ya ampliamente utilizado en medicina, principalmente en los sistemas de salud pública debido a su alta disponibilidad y bajo costo. Este estudio pretende mejorar las propiedades de biocompatibilidad de este material. Muestras de AISI 316L fueron anodizadas con electrolito NaOH 10M, densidad de corriente de 0,6 mA.cm-2 durante 5 y 10 minutos. La muestra anodizada durante 5 minutos tenía plata añadida a la superficie. Las superficies anodizadas se analizaron mediante microscopía electrónica de barrido (SEM-FEG/EDS), microscopía de fuerza atómica (AFM), ángulo de contacto. Los ensayos de biofuncionalidad abarcaron la formación de hidroxiapatita, citotoxicidad y acción bactericida y antifúngica. Los resultados mostraron una capa anodizada nanorugosa con hidrofilia y biofuncionalidad satisfactoria para su uso como biomaterial. Sin embargo, las muestras con plata no mostraron un resultado satisfactorio de acción bactericida. El desempeño más satisfactorio alcanzado en las caracterizaciones lo presentó la muestra anodizada por cinco minutos en relación a la propiedad de rugosidad, mostrando buenos resultados para la formación de hidroxiapatita. De esta forma, esta capa obtenida se muestra como una alternativa prometedora para futuras aplicaciones en áreas biomédicas en comparación con el acero AISI 316L original que se utiliza actualmente para estas funcionalidades.

Citas

Anderson, J. A., Lamichhane, S., & Mani, G. (2016). Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies. Journal of Biomedical Materials Research - Part A, 104(11), 2658–2672.

Andreoli, C., Gigante, D., & Nunziata, A. (2003). A review of in vitro methods to assess the biological activity of tobacco smoke with the aim of reducing the toxicity of smoke. Toxicology in Vitro, 17(5–6), 587–594.

Ansell, R. O., Dickinson, T., & Povey, A. F. (1978). of the Films on Coloured Stainless Steel, 18(December 1976).

Artunduaga Bonilla, J. J., Paredes Guerrero, D. J., Sánchez Suárez, C. I., Ortiz López, C. C., & Torres Sáez, R. G. (2015). In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology and Biotechnology, 31(11), 1801–1809.

Bian, T., Zhao, K., Meng, Q., Tang, Y., Jiao, H., & Luo, J. (2019). The construction and performance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif. Materials and Design, 162, 60–69. The Authors. Retrieved from https://doi.org/10.1016/j.matdes.2018.11.040

Brooks, E. K., Brooks, R. P., & Ehrensberger, M. T. (2017). Effects of simulated inflammation on the corrosion of 316L stainless steel. Materials Science and Engineering C, 71, 200–205. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2016.10.012

Burleigh, T. D., Schmuki, P., & Virtanen, S. (2009). Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH. Journal of The Electrochemical Society, 156(1), C45.

Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering R: Reports, 87, 1–57. Elsevier B.V.

Coelho, P. G., & Jimbo, R. (2014). Osseointegration of metallic devices: Current trends based on implant hardware design. Archives of Biochemistry and Biophysics, 561, 99–108. Elsevier Inc. Retrieved from http://dx.doi.org/10.1016/j.abb.2014.06.033

Evans, C., Leiva-Garcia, R., & Akid, R. (2018). Strain evolution around corrosion pits under fatigue loading. Theoretical and Applied Fracture Mechanics, 95(February), 253–260. Elsevier. Retrieved from https://doi.org/10.1016/j.tafmec.2018.02.015

Ferreira, C. C., Sousa, L. L. de, Ricci, V. P., Rigo, E. C. da S., Ramos, A. S., Campos, M. G. N., & Mariano, N. A. (2019). Titanium Biomimetically Coated With Hydroxyapatite, Silver Nitrate and Polycaprolactone, for Use In Biomaterials (Biomedicine). Materials Research, 22(suppl 1), 1–9.

Figueiró, L. R. (2016). Avaliação in vitro da Toxicidade do Thirdhand Smoke. UFCSPA.

Figueiró, Luciana Rizzieri, Dantas, D. C. M., Linden, R., & Ziulkoski, A. L. (2016). Thirdhand tobacco smoke: procedures to evaluate cytotoxicity in cell cultures. Toxicology Mechanisms and Methods, 26(5), 355–361.

Francisco, J. S. (2013). Avaliação do Pré Tratamento a base de sulfossiloxano sobre aço galvannealed combinado com tintas anticorrosivas. Universidade de São Paulo. Retrieved from https://www.teses.usp.br/teses/disponiveis/3/3137/tde-08072014-123138/publico/Diss_JulianaFrancisco.pdf.

Gama, R. O. (2014). Controle do comportamento hidrofílico/hidrofóbico de polímeros naturais biodegradáveis através da decoração de superfícies com nano e microcomponentes. Universidade Federal de Minas Gerais. Retrieved from https://repositorio.ufmg.br/bitstream/1843/BUOS-9LFMQ8/1/tese_renata_de_oliveira_gama.pdf.

Gentil, V. (2012). Corrosão (6th ed.). Rio de Janeiro: LTC.

Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=&AN=S0109564106001850&site=eds-live

Guerra-Fuentes, L., Garcia-Sanchez, E., Juarez-Hernandez, A., & Hernandez-Rodriguez, M. A. L. (2015). Failure analysis in 316L stainless steel supracondylar blade plate. Engineering Failure Analysis, 57, 243–247. Elsevier Inc.

Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436(7054), 1171–1175.

Huang, X., Wang, D., Hu, L., Song, J., & Chen, Y. (2019). Preparation of a novel antibacterial coating precursor and its antibacterial mechanism. Applied Surface Science, 465(September 2018), 478–485. Elsevier. Retrieved from https://doi.org/10.1016/j.apsusc.2018.09.160

Huang, Y., Wang, W., Zhang, X., Liu, X., Xu, Z., Han, S., Su, Z., et al. (2018). A prospective material for orthopedic applications: Ti substrates coated with a composite coating of a titania-nanotubes layer and a silver-manganese-doped hydroxyapatite layer. Ceramics International, 44(5), 5528–5542. Elsevier Ltd and Techna Group S.r.l. Retrieved from https://doi.org/10.1016/j.ceramint.2017.12.197

Huynh, V., Ngo, N. K., & Golden, T. D. (2019). Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications. International Journal of Biomaterials, 2019.

Jafari, T., Simchi, A., & Khakpash, N. (2010). Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Journal of Colloid and Interface Science, 345(1), 64–71. Elsevier Inc.

Jang, Y., Choi, W. T., Johnson, C. T., García, A. J., Singh, P. M., Breedveld, V., Hess, D. W., et al. (2018). Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomaterials Science and Engineering, 4(1), 90–97.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1), 95–101.

Kora, A. J., & Arunachalam, J. (2011). Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World Journal of Microbiology and Biotechnology, 27(5), 1209–1216.

Kowalski, D., Kim, D., & Schmuki, P. (2013). TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today, 8(3), 235–264. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.nantod.2013.04.010

Krawczyńska, A., Dziendzikowska, K., Gromadzka-Ostrowska, J., Lankoff, A., Herman, A. P., Oczkowski, M., Królikowski, T., et al. (2015). Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. Food and Chemical Toxicology, 85, 96–105.

Kunzler, T. P., Drobek, T., Schuler, M., & Spencer, N. D. (2007). Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials, 28(13), 2175–2182.

Lin, F. H., Hsu, Y. S., Lin, S. H., & Sun, J. S. (2002). The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials, 23(19), 4029–4038.

Mahapatro, A. (2015). Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering C, 55, 227–251. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2015.05.018

Marcus, P., & Maurice, V. (2000). Passivity of Metals and Alloys. In R. W. Caren, P. Haseb, & E. J. Kramer (Eds.), Material Science and Technology. WILEY-VCH Verlang GmbH & Co KGaA.

Maximo, F. S., Elias, C. N., Fernandes, D. J., Monteiro, F. de O., & Cavalcanti, J. (2016). Análise da superfície e osseointegração de implantes dentários com superfícies biomiméticas contedo Ca, Mg e F. Revista Materia, 21(1), 196–203.

Mirzaee, M., Vaezi, M., & Palizdar, Y. (2016). Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Materials Science and Engineering C, 69, 675–684. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2016.07.057

Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., & Ishihara, M. (2019). Synthesis and application of silver nanoparticles (Ag nps) for the prevention of infection in healthcare workers. International Journal of Molecular Sciences, 20(15).

Parcharoen, Y., Kajitvichyanukul, P., Sirivisoot, S., & Termsuksawad, P. (2014). Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Applied Surface Science, 311, 54–61. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.2014.04.207

Parra, B. S., da Silva, E. N., Puolakkainen, P., Pinheiro, M. M., & Pinheiro, M. M. (2006). Rugosidade superficial de revestimentos cerâmicos. Cerâmica Industrial, 11, 4.

Peng, C., Izawa, T., Zhu, L., Kuroda, K., & Okido, M. (2019). Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. ACS Applied Materials and Interfaces, 11(49), 45489–45497.

Pfeiffer, F., Herzog, B., Kern, D., Scheideler, L., Geis-Gerstorfer, J., & Wolburg, H. (2003). Cell reactions to microstructured implant surfaces. Microelectronic Engineering, 67–68, 913–922.

Pinheiro, M. M., Ciconelli, R. M., Jacques, N. de O., Genaro, P. S., Martini, L. A., & Ferraz, M. B. (2010). O impacto da osteoporose no Brasil: dados regionais das fraturas em homens e mulheres adultos - The Brazilian Osteoporosis Study (BRAZOS). Revista Brasileira de Reumatologia, 50(2), 113–120.

Saha, S. K., Park, Y. J., Kim, J. W., & Cho, S. O. (2019). Self-organized honeycomb-like nanoporous oxide layer for corrosion protection of type 304 stainless steel in an artificial seawater medium. Journal of Molecular Liquids, 296, 111823. Elsevier Ltd. Retrieved from https://doi.org/10.1016/j.molliq.2019.111823

Sheikh, Z., Brooks, P. J., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 8(9), 5671–5701.

Silva, E. F.; Oliveira, L. F. C. (2011). Caracterização química e metalográfica dos. Acta Ortopédica Brasileira, 19(5), 280–285.

Sivaraj, D., & Vijayalakshmi, K. (2019). Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrasonics Sonochemistry, 59(April), 104730. Elsevier. Retrieved from https://doi.org/10.1016/j.ultsonch.2019.104730

Song, M. M., Song, W. J., Bi, H., Wang, J., Wu, W. L., Sun, J., & Yu, M. (2010). Cytotoxicity and cellular uptake of iron nanowires. Biomaterials, 31(7), 1509–1517. Elsevier Ltd.

Strnad, G., Chirila, N., Petrovan, C., & Russu, O. (2016). Contact Angle Measurement on Medical Implant Titanium Based Biomaterials. Procedia Technology, 22, 946–953.

Svendsen, C., Spurgeon, D. J., Hankard, P. K., & Weeks, J. M. (2004). A review of lysosomal membrane stability measured by neutral red retention: Is it a workable earthworm biomarker? Ecotoxicology and Environmental Safety, 57(1), 20–29.

Vazquez-Muñoz, R., Avalos-Borja, M., & Castro-Longoria, E. (2014). Ultrastructural analysis of candida albicans when exposed to silver nanoparticles. PLoS ONE, 9(10), 1–10.

Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1–3), 69–117.

Wang, Y., Li, G., Wang, K., & Chen, X. (2020). Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel. Applied Surface Science, 505(May 2019), 144497. Elsevier. Retrieved from https://doi.org/10.1016/j.apsusc.2019.144497

Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.

Young, L. (1961). Anodic oxide films.

Yuan, Y., Jin, S., Qi, X., Chen, X., Zhang, W., Yang, K., & Zhong, H. (2019). Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. Journal of Materials Science and Technology, 35(11), 2727–2733. The editorial office of Journal of Materials Science & Technology. Retrieved from https://doi.org/10.1016/j.jmst.2019.04.028

Publicado

15/11/2022

Cómo citar

PETRY, M. .; KUNST, S. R.; MORISSO, F. D. P. .; VOLZ, D. R. .; ZIULKOSKI, A. L. .; OLIVEIRA, C. T. . Evaluación de la biofuncionalidad de la adición de plata sobre superficie anodizada de acero AISI 316L. Research, Society and Development, [S. l.], v. 11, n. 15, p. e235111537037, 2022. DOI: 10.33448/rsd-v11i15.37037. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37037. Acesso em: 17 jul. 2024.

Número

Sección

Ingenierías