Avaliação da biofuncionalidade de adição de prata em superfície anodizada de aço AISI 316L
DOI:
https://doi.org/10.33448/rsd-v11i15.37037Palavras-chave:
Anodização; Biomateriais; Aço inoxidável AISI 316L.Resumo
O aço inoxidável austenítico AISI 316L é um material já utilizado amplamente na área da medicina, principalmente nos sistemas públicos de saúde por sua alta disponibilidade e baixo custo. Este estudo tem por objetivo buscar o aperfeiçoamento das propriedades de biocompatibilidade deste material. Amostras de AISI 316L foram anodizadas com eletrólito 10M de NaOH densidade de corrente de 0,6 mA.cm-2 por 5 e 10 minutos. A amostra anodizada por 5 minutos teve adicionada prata à superfície. As superfícies anodizadas foram analisadas por meio de microscopia eletrônica de varredura (MEV-FEG/EDS), microscopia de força atômica (AFM), ângulo de contato. Os ensaios de biofuncionalidade englobaram a formação de hidroxiapatita, citotoxicidade e ação bactericida e antifúngica. Os resultados mostraram uma camada anodizada nanorugosa com hidrofilia e biofuncionalidade satisfatória para uso como biomaterial. Todavia, as amostras com prata não apresentaram resultado satisfatório de ação bactericida. O desempenho mais satisfatório atingido nas caracterizações foi apresentado pela amostra anodizada por cinco minutos em relação a propriedade de rugosidade, apresentando bons resultados para formação de hidroxiapatita. Desta forma, esta camada obtida se mostra como uma alternativa promissora para futuras aplicações em áreas biomédicas quando comparada ao aço original AISI 316L utilizado atualmente para estas funcionalidades.
Referências
Anderson, J. A., Lamichhane, S., & Mani, G. (2016). Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies. Journal of Biomedical Materials Research - Part A, 104(11), 2658–2672.
Andreoli, C., Gigante, D., & Nunziata, A. (2003). A review of in vitro methods to assess the biological activity of tobacco smoke with the aim of reducing the toxicity of smoke. Toxicology in Vitro, 17(5–6), 587–594.
Ansell, R. O., Dickinson, T., & Povey, A. F. (1978). of the Films on Coloured Stainless Steel, 18(December 1976).
Artunduaga Bonilla, J. J., Paredes Guerrero, D. J., Sánchez Suárez, C. I., Ortiz López, C. C., & Torres Sáez, R. G. (2015). In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology and Biotechnology, 31(11), 1801–1809.
Bian, T., Zhao, K., Meng, Q., Tang, Y., Jiao, H., & Luo, J. (2019). The construction and performance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif. Materials and Design, 162, 60–69. The Authors. Retrieved from https://doi.org/10.1016/j.matdes.2018.11.040
Brooks, E. K., Brooks, R. P., & Ehrensberger, M. T. (2017). Effects of simulated inflammation on the corrosion of 316L stainless steel. Materials Science and Engineering C, 71, 200–205. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2016.10.012
Burleigh, T. D., Schmuki, P., & Virtanen, S. (2009). Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH. Journal of The Electrochemical Society, 156(1), C45.
Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering R: Reports, 87, 1–57. Elsevier B.V.
Coelho, P. G., & Jimbo, R. (2014). Osseointegration of metallic devices: Current trends based on implant hardware design. Archives of Biochemistry and Biophysics, 561, 99–108. Elsevier Inc. Retrieved from http://dx.doi.org/10.1016/j.abb.2014.06.033
Evans, C., Leiva-Garcia, R., & Akid, R. (2018). Strain evolution around corrosion pits under fatigue loading. Theoretical and Applied Fracture Mechanics, 95(February), 253–260. Elsevier. Retrieved from https://doi.org/10.1016/j.tafmec.2018.02.015
Ferreira, C. C., Sousa, L. L. de, Ricci, V. P., Rigo, E. C. da S., Ramos, A. S., Campos, M. G. N., & Mariano, N. A. (2019). Titanium Biomimetically Coated With Hydroxyapatite, Silver Nitrate and Polycaprolactone, for Use In Biomaterials (Biomedicine). Materials Research, 22(suppl 1), 1–9.
Figueiró, L. R. (2016). Avaliação in vitro da Toxicidade do Thirdhand Smoke. UFCSPA.
Figueiró, Luciana Rizzieri, Dantas, D. C. M., Linden, R., & Ziulkoski, A. L. (2016). Thirdhand tobacco smoke: procedures to evaluate cytotoxicity in cell cultures. Toxicology Mechanisms and Methods, 26(5), 355–361.
Francisco, J. S. (2013). Avaliação do Pré Tratamento a base de sulfossiloxano sobre aço galvannealed combinado com tintas anticorrosivas. Universidade de São Paulo. Retrieved from https://www.teses.usp.br/teses/disponiveis/3/3137/tde-08072014-123138/publico/Diss_JulianaFrancisco.pdf.
Gama, R. O. (2014). Controle do comportamento hidrofílico/hidrofóbico de polímeros naturais biodegradáveis através da decoração de superfícies com nano e microcomponentes. Universidade Federal de Minas Gerais. Retrieved from https://repositorio.ufmg.br/bitstream/1843/BUOS-9LFMQ8/1/tese_renata_de_oliveira_gama.pdf.
Gentil, V. (2012). Corrosão (6th ed.). Rio de Janeiro: LTC.
Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=&AN=S0109564106001850&site=eds-live
Guerra-Fuentes, L., Garcia-Sanchez, E., Juarez-Hernandez, A., & Hernandez-Rodriguez, M. A. L. (2015). Failure analysis in 316L stainless steel supracondylar blade plate. Engineering Failure Analysis, 57, 243–247. Elsevier Inc.
Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436(7054), 1171–1175.
Huang, X., Wang, D., Hu, L., Song, J., & Chen, Y. (2019). Preparation of a novel antibacterial coating precursor and its antibacterial mechanism. Applied Surface Science, 465(September 2018), 478–485. Elsevier. Retrieved from https://doi.org/10.1016/j.apsusc.2018.09.160
Huang, Y., Wang, W., Zhang, X., Liu, X., Xu, Z., Han, S., Su, Z., et al. (2018). A prospective material for orthopedic applications: Ti substrates coated with a composite coating of a titania-nanotubes layer and a silver-manganese-doped hydroxyapatite layer. Ceramics International, 44(5), 5528–5542. Elsevier Ltd and Techna Group S.r.l. Retrieved from https://doi.org/10.1016/j.ceramint.2017.12.197
Huynh, V., Ngo, N. K., & Golden, T. D. (2019). Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications. International Journal of Biomaterials, 2019.
Jafari, T., Simchi, A., & Khakpash, N. (2010). Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Journal of Colloid and Interface Science, 345(1), 64–71. Elsevier Inc.
Jang, Y., Choi, W. T., Johnson, C. T., García, A. J., Singh, P. M., Breedveld, V., Hess, D. W., et al. (2018). Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomaterials Science and Engineering, 4(1), 90–97.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1), 95–101.
Kora, A. J., & Arunachalam, J. (2011). Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World Journal of Microbiology and Biotechnology, 27(5), 1209–1216.
Kowalski, D., Kim, D., & Schmuki, P. (2013). TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today, 8(3), 235–264. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.nantod.2013.04.010
Krawczyńska, A., Dziendzikowska, K., Gromadzka-Ostrowska, J., Lankoff, A., Herman, A. P., Oczkowski, M., Królikowski, T., et al. (2015). Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. Food and Chemical Toxicology, 85, 96–105.
Kunzler, T. P., Drobek, T., Schuler, M., & Spencer, N. D. (2007). Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials, 28(13), 2175–2182.
Lin, F. H., Hsu, Y. S., Lin, S. H., & Sun, J. S. (2002). The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials, 23(19), 4029–4038.
Mahapatro, A. (2015). Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering C, 55, 227–251. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2015.05.018
Marcus, P., & Maurice, V. (2000). Passivity of Metals and Alloys. In R. W. Caren, P. Haseb, & E. J. Kramer (Eds.), Material Science and Technology. WILEY-VCH Verlang GmbH & Co KGaA.
Maximo, F. S., Elias, C. N., Fernandes, D. J., Monteiro, F. de O., & Cavalcanti, J. (2016). Análise da superfície e osseointegração de implantes dentários com superfícies biomiméticas contedo Ca, Mg e F. Revista Materia, 21(1), 196–203.
Mirzaee, M., Vaezi, M., & Palizdar, Y. (2016). Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Materials Science and Engineering C, 69, 675–684. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.msec.2016.07.057
Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., & Ishihara, M. (2019). Synthesis and application of silver nanoparticles (Ag nps) for the prevention of infection in healthcare workers. International Journal of Molecular Sciences, 20(15).
Parcharoen, Y., Kajitvichyanukul, P., Sirivisoot, S., & Termsuksawad, P. (2014). Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications. Applied Surface Science, 311, 54–61. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.2014.04.207
Parra, B. S., da Silva, E. N., Puolakkainen, P., Pinheiro, M. M., & Pinheiro, M. M. (2006). Rugosidade superficial de revestimentos cerâmicos. Cerâmica Industrial, 11, 4.
Peng, C., Izawa, T., Zhu, L., Kuroda, K., & Okido, M. (2019). Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. ACS Applied Materials and Interfaces, 11(49), 45489–45497.
Pfeiffer, F., Herzog, B., Kern, D., Scheideler, L., Geis-Gerstorfer, J., & Wolburg, H. (2003). Cell reactions to microstructured implant surfaces. Microelectronic Engineering, 67–68, 913–922.
Pinheiro, M. M., Ciconelli, R. M., Jacques, N. de O., Genaro, P. S., Martini, L. A., & Ferraz, M. B. (2010). O impacto da osteoporose no Brasil: dados regionais das fraturas em homens e mulheres adultos - The Brazilian Osteoporosis Study (BRAZOS). Revista Brasileira de Reumatologia, 50(2), 113–120.
Saha, S. K., Park, Y. J., Kim, J. W., & Cho, S. O. (2019). Self-organized honeycomb-like nanoporous oxide layer for corrosion protection of type 304 stainless steel in an artificial seawater medium. Journal of Molecular Liquids, 296, 111823. Elsevier Ltd. Retrieved from https://doi.org/10.1016/j.molliq.2019.111823
Sheikh, Z., Brooks, P. J., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 8(9), 5671–5701.
Silva, E. F.; Oliveira, L. F. C. (2011). Caracterização química e metalográfica dos. Acta Ortopédica Brasileira, 19(5), 280–285.
Sivaraj, D., & Vijayalakshmi, K. (2019). Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrasonics Sonochemistry, 59(April), 104730. Elsevier. Retrieved from https://doi.org/10.1016/j.ultsonch.2019.104730
Song, M. M., Song, W. J., Bi, H., Wang, J., Wu, W. L., Sun, J., & Yu, M. (2010). Cytotoxicity and cellular uptake of iron nanowires. Biomaterials, 31(7), 1509–1517. Elsevier Ltd.
Strnad, G., Chirila, N., Petrovan, C., & Russu, O. (2016). Contact Angle Measurement on Medical Implant Titanium Based Biomaterials. Procedia Technology, 22, 946–953.
Svendsen, C., Spurgeon, D. J., Hankard, P. K., & Weeks, J. M. (2004). A review of lysosomal membrane stability measured by neutral red retention: Is it a workable earthworm biomarker? Ecotoxicology and Environmental Safety, 57(1), 20–29.
Vazquez-Muñoz, R., Avalos-Borja, M., & Castro-Longoria, E. (2014). Ultrastructural analysis of candida albicans when exposed to silver nanoparticles. PLoS ONE, 9(10), 1–10.
Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1–3), 69–117.
Wang, Y., Li, G., Wang, K., & Chen, X. (2020). Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel. Applied Surface Science, 505(May 2019), 144497. Elsevier. Retrieved from https://doi.org/10.1016/j.apsusc.2019.144497
Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.
Young, L. (1961). Anodic oxide films.
Yuan, Y., Jin, S., Qi, X., Chen, X., Zhang, W., Yang, K., & Zhong, H. (2019). Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation. Journal of Materials Science and Technology, 35(11), 2727–2733. The editorial office of Journal of Materials Science & Technology. Retrieved from https://doi.org/10.1016/j.jmst.2019.04.028
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Magali Petry; Sandra Raquel Kunst; Fernando Dal Pont Morisso; Débora Rech Volz; Ana Luiza Ziulkoski; Cláudia Trindade Oliveira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.