Monitoreo de la estabilidad de la xantofila fucoxantina en biomasas de microalgas y algas y extractos almacenados a bajas temperaturas
DOI:
https://doi.org/10.33448/rsd-v11i15.37712Palabras clave:
Phaeophyceae; Isómeros de Fucoxantina; Carotenoides; UHPLC; Bacillariophyceae.Resumen
El análisis de fucoxantina (FCX) en biomasas de algas presenta algunas limitaciones, especialmente en lo que se refiere a la conservación de la muestra después de su recolección hasta la extracción del pigmento. La estabilidad de FCX se evaluó en muestras de biomasa y extracto de una diatomea y tres especies de algas marrón (Phaeophyceae) almacenados a -20ºC y -80ºC, durante 60 días. La FCX se cuantificó mediante UHPLC-DAD. Los extractos metanólicos de las biomasas de micro/macroalgas almacenados a -20ºC y -80ºC fueron más efectivos en la conservación de FCX, en comparación a las biomasas de algas. Además, el análisis cromatográfico mostró un aumento del tiempo de retención del pico de FCX a lo largo del almacenamiento de la muestra, posiblemente debido a la isomerización trans→cis de la molécula. Esta información es relevante para elegir el mejor protocolo de almacenamiento y preservacion de FCX, porque los cambios de conformaciones geométricas de la molécula durante el almacenamiento afectam fuertemente sus actividades biológicas.
Citas
Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880–1902.
Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2011). Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 24(6), 811–820.
Aziz, E., Batool, R., Akhtar, W., Rehman, S., Shahzad, T., Malik, A., Shariati, M., Laishevtcev, A., Plygun, S., Heydari, M., Rauf, A., & Arif, S., A. (2020). Xanthophyll: Health benefits and therapeutic insights. Life Sciences, 240: 1-12.
Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K. I., Boulanger, R., Dufour, D., & Westby, A. (2010). Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chemistry, 121(2), 348–357.
Britton, G., & Khachik, F. (2009). Carotenoids in Food. In Carotenoids. Basel: Birkhäuser Basel.
Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology, 7(1), 1-15.
Christaki, E., Bonos, E., Giannenas, I., & Florou-Paneri, P. (2013). Functional properties of carotenoids originating from algae: Functional properties of algal carotenoids. Journal of the Science of Food and Agriculture, 93(1), 5–11.
Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M., Chan, K., & Ebrahimi, M. (2017). HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard. Data in Brief, 10, 583-586.
Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affana, A, Oh, C., Jung, W., & Jeon, Y. J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), 2045-2051.
Honda, M. (2020). Nutraceutical and Pharmaceutical Applications of Carotenoids. Pigments from Microalgae Handbook. Springer: Germany.
Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Science, 67(5), 771-783.
Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14 (7), 13763-13781.
Nakazawa, Y., Sashima, T., Hosokawa, M., & Miyashita, K. (2009). Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. Journal of Functional Foods, 1(1), 88-97.
Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 1-21.
Pangestuti, R., Siahaan, E. A., & Kim, S-K. (2018). Photoprotective substances derived from marine algae. Marine Drugs, 16(11): 1-16.
Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid presents in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806-1828.
Piovan, A., Seraglia, R., Bresin, B., Caniato, R., & Filippini, R. (2013). Fucoxanthin from Undaria pinnatifida: Photostability and coextractive effects. Molecules, 18(6), 6298-6310.
Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L. R., Hosokawa M., & Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2), 501-508.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/.
Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., & Ribot, J. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93.
Ryckebosch, E., Muylaert, K., Eeckhout, M., Ruyssen, T., & Foubert, I. (2011). Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. Journal of Agricultural and Food Chemistry, 59(20), 11063-11069.
Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science & Technology, 13(11), 361-371.
Teixeira, J., Feio, M., & Figueira, M. L. (2014). O papel do stress oxidativo no envelhecimento e na demência. Psilogos: Revista do Serviço de Psiquiatria do Hospital Fernando Fonseca, 12, 43-57.
Wood, L. G., Garg, M. L., Blake, R. J., Garcia-Caraballo, S., & Gibson, P. G. (2005). Airway and circulating levels of carotenoids in asthma and healthy controls. Journal of the American College of Nutrition, 24(6), 448-455.
Yabuzaki J. (2017). Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database (Oxford), 2017(1), bax004.
Zhao, D., Kim, S. M., Pan, C. H., & Chung, D. (2014). Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil. Food Chemistry, 145, 505-513.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Caroline Schmitz; Aline Nunes; Cláudia Marlene Bauer ; José Bonomi-Barufi; Marcelo Maraschin
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.