Residuos agroindustriales de lactosuero como solvente ecológicamente correcto en la elaboración de películas hidrocoloidales biopoliméricas: estudio de las propiedades ópticas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i17.39189

Palabras clave:

Empaque de alimentos; Películas ecológicas; Luz ultravioleta; Transparencia; Oxidación de lípidos.

Resumen

El desarrollo de envases ecoamigables, utilizando fuentes renovables de ciclo de vida corto, como el almidón y el quitosano, se destacan en la investigación como innovación tecnológica. En el mismo sentido, el suero líquido (residuo de la industria láctea) como solvente (agente dispersante) en la obtención de películas flexibles. El presente trabajo tuvo como objetivo desarrollar películas de la mezcla de almidón con diferentes concentraciones de quitosano, solubilizado en suero líquido por el método de colada discontinua. Las películas se caracterizaron en cuanto a propiedades ópticas (colorimetría, opacidad y transparencia) y barrera a la radiación ultravioleta (UV). Todas las películas de las mezclas mostraron una diferencia de color total (ΔE) visible en todos los tratamientos, ΔE >12. Además de una buena propiedad de barrera contra la radiación de luz UV. El tratamiento con 25% (m/m) de quitosano presentó mayor barrera a la luz UV (200 a 315 nm), región de mayor susceptibilidad a reacciones de oxidación de lípidos en alimentos. Por lo tanto, el suero presentó una acción solvente-dispersante en la formación de películas biopoliméricas. Así, las películas hidrocoloides mostraron un fuerte potencial tecnológico para su uso y aplicación como envases ecoamigables para su aplicación en productos lácteos ricos en compuestos foto-oxidantes.

Citas

Ahmed, M., Pickova, J., Ahmad, T., Liaquat, M., Farid, A., & Jahangir, M. (2016). Oxidation of lipids in foods. Sarhad journal of agriculture, 32(3), 230–238.

Akyuz, L., Kaya, M., Mujtaba, M., Ilk, S., Sargin, I., Salaberria, A. M., Labidi, J., Cakmak, Y. S., & Islek, C. (2018). Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. International Journal of Biological Macromolecules, 115, 438–446.

Argüello-García, E., Solorza-Feria, J., Rendón-Villalobos, J. R., Rodríguez-González, F., Jiménez-Pérez, A., & Flores-Huicochea, E. (2014). Properties of edible films based on oxidized starch and Zein. International Journal of Polymer Science, 2014, 1–9.

Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Prior, Á., & Fernández-Bolaños, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213–218.

Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Garrido-Miranda, K. A., & Pereira, E. D. (2015). Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 71, 461–475.

Cazón, P., Vázquez, M., & Velazquez, G. (2019). Composite films with UV-barrier properties based on bacterial cellulose combined with chitosan and poly(vinyl alcohol): Study of puncture and water interaction properties. Biomacromolecules, 20(5), 2084–2095.

Costa, R. A., Cavalcante, T. T. A., Melo, C. T. V., Barroso, D. L. A., Melo, H. M., Carvalho, M. G., & Júnior, F. E. A. C. (2018). Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African Journal of Biotechnology, 8, 232–238.

Dalsgaard, T. K., Otzen, D., Nielsen, J. H., & Larsen, L. B. (2007). Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry, 55(26), 10968–10976.

Donati, I., Stredanska, S., Silvestrini, G., Vetere, A., Marcon, P., Marsich, E., Mozetic, P., Gamini, A., Paoletti, S., & Vittur, F. (2005). The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials, 26(9), 987–998.

Edrisi Sormoli, M., Das, D., & Langrish, T. A. G. (2013). Crystallization behavior of lactose/sucrose mixtures during water-induced crystallization. Journal of Food Engineering, 116(4), 873–880.

Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2015). Improvement of barrier properties of fish gelatin films promoted by gelatin glycation with lactose at high temperatures. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 63(1), 315–321.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042.

Ge, G., Lu, Y., Qu, X., Zhao, W., Ren, Y., Wang, W., Wang, Q., Huang, W., & Dong, X. (2020). Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano, 14(1), 218–228.

González Sandoval, D. C., Luna Sosa, B., Martínez-Ávila, G. C. G., Rodríguez Fuentes, H., Avendaño Abarca, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia ficus-indica. Coatings, 9(8), 506.

Goyeneche, R., Agüero, M. V., Roura, S., & Di Scala, K. (2014). Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biology and Technology, 93, 106–113.

Grumezescu, V., Socol, G., Grumezescu, A. M., Holban, A. M., Ficai, A., Truşcǎ, R., Bleotu, C., Balaure, P. C., Cristescu, R., & Chifiriuc, M. C. (2014). Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 302, 262–267.

Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research International, 23(15), 15310–15320.

Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), 287–298.

Ioelovich, M. (2014). Crystallinity and Hydrophility of Chitin and Chitosan. Journal of Chemistry, 3, 7–14.

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290–297.

Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science, 26(9), 1921–1971.

Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50–58.

Lima, J. R., Garruti, D. D. S., Bruno, L. M., Araújo, Í. M. da S., Nobre, A. C. O., & Garcia, L. G. S. (2017). Replacement of peanut by residue from the cashew nut kernel oil extraction to produce a type paçoca candy: Cashew kernel oil extraction residue. Journal of Food Processing and Preservation, 41(2), e12775.

Loesdau, M., Chabrier, S., & Gabillon, A. (2014). Hue and saturation in the RGB color space. In Lecture Notes in Computer Science (pp. 203–212). Springer International Publishing.

Mohammadi, R., Mohammadifar, M. A., Rouhi, M., Kariminejad, M., Mortazavian, A. M., Sadeghi, E., & Hasanvand, S. (2018). Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films. International Journal of Biological Macromolecules, 107(Pt A), 406–412.

Oliveira, V. R. L., Monteiro, M. K. S., Santos, F. K. G., Leite, R. H. L., & Aroucha, E. M. M. (2018). Effect of drying temperature in biopolymeric films of cassava starch and its effect on wettability, water vapor barrier and mechanical properties. Materials Science Forum, 930, 270–275.

Sies, H., & Stahl, W. (2003). Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 73(2), 95–100.

Silva, P. L., Gomes, A. M. M., Ricardo, N. M. P. S., & Machado, T. F. (2016). Preparation and characterization of phosphorylated starch blends with chitosan and polyvinyl alcohol. Quimica Nova.

Tessaro, L., Luciano, C. G., Bittante, A. M. Q. B., Lourenço, R. V., Martelli-Tosi, M., & Sobral, P. J. A. (2021). Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food Hydrocolloids, 113.

Tomé, A. C. (2017). Biodegradable Films of Proteins of Milk Serum with pH 6.7 as Biscuit Packaging. Colloquium Agrariae, 213–221.

Wang, Z., Tang, L., Lin, F., Shen, Y., Chen, Y., Chen, X., … Lu, B. (2020). Multi-Functional Edible Film with Excellent UV Barrier Performance and Accurate Instant Ion Printing Capability. Advanced Sustainable Systems, 4(7).

Wang, Z. C., Qin, C. Q., Zhang, X., Wang, Q., Li, R. X., & Ren, D. F. (2021). Effect of whey protein isolate/chitosan/microcrystalline cellulose/PET multilayer bottles on the shelf life of rosebud beverages. Food Chemistry, 347.

Wikström, F., Williams, H., Trischler, J., & Rowe, Z. (2019). The importance of packaging functions for food waste of different products in households. Sustainability, 11(9), 2641.

Zhang, Y., & Han, J. H. (2006). Plasticization of pea starch films with monosaccharides and polyols. Journal of Food Science, 71(6), E253–E261.

Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules, 135, 344–352.

Publicado

27/12/2022

Cómo citar

RODRIGUES, J. R. P. .; MIRANDA, K. W. E. .; OLIVEIRA NETO, S. I. de .; GALVÃO, A. M. M. T. .; ARAÚJO, A. W. de O. .; SOUZA, T. M. de .; CHINELATE, G. C. B. . Residuos agroindustriales de lactosuero como solvente ecológicamente correcto en la elaboración de películas hidrocoloidales biopoliméricas: estudio de las propiedades ópticas. Research, Society and Development, [S. l.], v. 11, n. 17, p. e254111739189, 2022. DOI: 10.33448/rsd-v11i17.39189. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39189. Acesso em: 26 dic. 2024.

Número

Sección

Ingenierías