Propiedades físico-mecánicas de un compuesto de resina fluida reforzado con nanofibras
DOI:
https://doi.org/10.33448/rsd-v12i4.41015Palabras clave:
Resinas compuestas; Cepillado dental; Nanofibras.Resumen
Este estudio in vitro tuvo como objetivo evaluar el efecto de la prueba simulada de cepillado de dientes sobre el desgaste y la rugosidad de diferentes compuestos de resina de baja viscosidad, así como la tensión de contracción de polimerización. Se prepararon treinta muestras rectangulares (5 × 10 × 3 mm) y se asignaron a tres compuestos de resina de baja viscosidad diferentes (n=10): Filtek flow Z350 (Z350); Relleno NanovaPro (Nanova) y SureFil SDR Flow (SDR). Los especímenes fueron cepillados durante 100.000 ciclos usando una máquina de prueba de cepillado de dientes con puntas de cerdas suaves (Colgate Classic, Colgate-Palmolive Co., Osasco, Sao Paulo, Brasil) y suspensión dentífrica (Colgate MFP, Colgate-Palmolive Co.) en agua desionizada bajo una carga de 300 g. La rugosidad de la superficie (Ra) (n=10) (antes y después del cepillado) y el desgaste (µm) (n=10) se midieron con un rugosímetro. Además, se evaluaron la microdureza (KHN) (n=5) y el estrés de contracción (MPa) (n=5). Los datos se analizaron mediante unidireccional para datos de desgaste, microdureza y tensión de contracción y bidireccional para rugosidad ANOVA y prueba de Tukey (α = 0,05). El grupo Nanova presentó mayor rugosidad final (1,79±0,36) (p < 0,031), desgaste (13,87±3,26) (p<0,001) y microdureza (52,561,7) que los demás grupos (p < 0,006). Para el ensayo de tracción, todos los materiales no mostraron diferencia en relación al esfuerzo de contracción (p= 0,468). El grupo Nanova mostró mayor desgaste y rugosidad que los otros grupos. SDR y Z350 fueron estadísticamente más resistentes al desgaste.
Citas
Ahovuo-Saloranta, A., Forss, H., Walsh, T., Nordblad, A., Mäkelä, M., & Worthington, H. V. (2017). Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database of Systematic Review, 7(7), CD001830.
Alkilzy, M., Berndt, C., & Splieth, C. H. (2011). Sealing proximal surfaces with polyurethane tape: three-year evaluation. Clinical Oral Investigations, 15(6), 879–884.
Alrahlah, A., Silikas, N., & Watts, D. C. (2014). Post-cure depth of cure of bulk fill dental resin-composites. Dental Materials, 30(2), 149-154.
Anttila, E. J., Krintila, O. H., Laurila, T. K., Lassila, L. V., Vallittu, P. K., & Hernberg, R. G. (2008). Evaluation of polymerization shrinkage and hydroscopic expansion of fiber-reinforced biocomposites using optical fiber Bragging grating sensors. Dental Materials, 24(12), 1720-1727.
Ardestani, S. S., Bonan, R. F., Mota, M. F., Farias, R. M. D. C., Menezes, R. R., Bonan, P. R. F., Maciel, P. P., Ramos-Perez, F. M. M., Batista, A. U. D., & da Cruz Perez, D. E. (2021). Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dental Materials, 37(10), 1615-1629.
Attar, N., Tam, L. E., & McComb, D. (2003). Flow, strength, stiffness and radiopacity of flowable resin composites. Journal of the Canadian Dental Association, 69(8), 516-521.
Baroudi, K., & Rodrigues, J. C. (2015). Flowable Resin Composites: A Systematic Review and Clinical Considerations. Journal of Clinical & Diagnostic Research, 9(6), ZE18-24.
Beauchamp, J., Caufield, P. W., Crall, J. J., Donly, K., Feigal, R., Gooch, B., Ismail, A., Kohn, W., Siegal, M., & Simonsen, R. (2008). American Dental Association Council on Scientific Affairs. Evidence-based clinical recommendations for the use of pit-and-fissure sealants: a report of the American Dental Association Council on Scientific Affairs. The Journal of the American Dental Association, 139(3), 257-268.
Borgia, E., Baron, R., & Borgia, J. L. (2019), Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. Journal of Prosthodontics, 28(1), e195-e203.
de Gee, A. J., Wendt, S. L., Werner, A., & Davidson, C. L. (1996). Influence of enzymes and plaque acids on in vitro wear of dental composites. Biomaterials, 17(13), 1327-1332.
Desai, H., Stewart, C. A., & Finer, Y. (2021). Minimally Invasive Therapies for the Management of Dental Caries-A Literature Review. Dentistry Journal, 9(12), 147.
Dionysopoulos, D., & Gerasimidou, O. (2021). Wear of contemporary dental composite resin restorations: a literature review. Restorative Dentistry & Endodontics, 46(2), e18.
Featherstone, J. D. B., & Doméjean, S. (2012) Minimal intervention dentistry: part 1. From 'compulsive' restorative dentistry to rational therapeutic strategies. British Dental Journal, 213(9), 441–445.
Ferracane, J. L. (2013). Resin-based composite performance: are there some things we can't predict? Dental Materials, 29(1), 51-58.
Frencken, J. E. (2017). Atraumatic restorative treatment and minimal intervention dentistry. British Dental Journal, 223(3), 183-189.
Garcia, D., Yaman, P., Dennison, J., & Neiva, G. (2014). Polymerization shrinkage and depth of cure of bulkfilll flowable composite resins. Operative Dentistry, 39(4), 441-448.
Habekost, Lde V., Camacho, G. B., Demarco, F. F., & Powers, J. M. (2007). Tensile bond strength and flexural modulus of resin cements-influence on the fracture resistance of teeth restored with ceramic inlays. Operative Dentistry, 32(5), 488–495.
Hevinga, M., Opdam, N., Frencken, J., Bronkhorst, E., & Truin. G. (2007). Microleakage and sealant penetration in contaminated carious fissures. Journal of Dentistry, 35(12), 909–914.
Ilie, N., & Stark, K. (2015), Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clinical Oral Investigations, 19(2), 271-279.
Khan, A. S., Azam, M. T., Khan, M., Mian, S. A., & Ur Rehman, I. (2015). An update on glass fiber dental restorative composites: a systematic review. Materials Science and Engineering C, 47, 26-39.
Kruly, P. C., Giannini M., Pascotto, R. C., Tokubo, L. M., Suga, U. S. G., Marques, A. C. R., & Terada, R. S. S. (2018). Meta-analysis of the clinical behavior of posterior direct resin restorations: Low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One, 13(2), e0191942.
Lambrechts, P., Braem, M., Vuylsteke-Wauters, M., & Vanherle, G. (1989). Quantitative in vivo wear of human enamel. Journal of Dental Research, 68(12), 1752-1754.
Lassila, L., Säilynoja, E., Prinssi, R., Vallittu, P., & Garoushi, S. (2019). Characterization of a new fiber-reinforced flowable composite. Odontology, 107(3), 342-352.
Leprince, J. G., Palin, W. M., Vanacker, J., Sabbagh, J., Devaux, J., & Leloup, G. (2014). Physico-mechanical characteristics of commercially available bulk-fill composites. Journal of Dentistry, 42(8), 993-1000.
Mackenzie, L., & Banerjee, A. (2017). Minimally invasive direct restorations: a practical guide British Dental Journal, 223(3), 163-171.
Meereis, C. T., Münchow, E. A., Oliveira da Rosa, W. L., Silva, A. F., & Piva, E. (2018). Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of composition strategies. Journal of the Mechanical Behavior Biomedical Materials, 82, 268-281.
Mondelli, R. F., Garrido Gabriel, T. R., Piola Rizzante, F. A., Magalhães, A. C., Soares Bombonatti, J. F., & Ishikiriama, S. K. (2015). Do different bleaching protocols affect the enamel microhardness? European Journal of Dentistry, 9(1), 25-30.
Nanova. (2016). NovaPro Fill Universal Composite; https://nanovabio.com/product/novapro-flow-flowable-composite.
Obeid, A. T., Garcia, L. H. A., Nascimento, T. R. L., Castellano, L. R. C., Bombonatti, J. F. S., Honório, H. M., Mondelli, R. F. L., Sauro, S., & Velo, M. M. A. C. (2022). Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants - An in vitro study. Journal of the Mechanical Behavior Biomedical Materials, 126, 105067. 10.1016/j.jmbbm.2021.105067.
Obeid, A. T., Kojic, D. D., Felix, C., Velo, M. M., Furuse, A. Y., & Bombonatti, J. F. (2022). Effects of radiant exposure and distance on resin-based composite polymerization. American Journal of Dentistry, 35(4), 172-177.
Oliveira, G. U., Mondelli, R. F., Charantola Rodrigues, M., Franco, E. B., Ishikiriama, S. K., & Wang, L. (2012). Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. Journal of Applied Oral Science, 20(5), 510–516.
Papkov, D., Zou, Y., Andalib, M. N., Goponenko, A., Cheng, S. Z., & Dzenis, Y. A. (2013). Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano. 7(4), 3324–3331.
Prakki, A., Cilli, R., Araujo, P. A., Navarro, M. F., Mondelli, J., & Mondelli, R. F. (2007). Effect of toothbrushing abrasion on weight loss and surface roughness of pH-cycled resin cements and indirect restorative materials. Quintessence International, 38(9), e544-e554.
Prakki, A., Cilli, R., Mondelli, R. F. L., & Kalachandra, S. (2008). In vitro wear, surface roughness and hardness of propanal- containing and diacetyl-containing novel composites and copolymers based on bis-GMA analogs. Dental Materials, 24(3), 410-417.
Pretty, I. A., & Ellwood, R. P. (2013). The caries continuum: opportunities to detect treat and monitor the re‐mineralization of early caries lesions. Journal of Dentistry, 41(2), 12‐21.
Rizzante, F. A. P., Mondelli, R. F. L., Furuse, A. Y., Borges, A. F. S., Mendonca, G., & Ishikiriama, S. K. (2019). Shrinkage stress and elastic modulus assessment of bulk-fill composites. Journal of Applied Oral Science, 27, e20180132.
Rodriguez, A., Yaman, P., Dennison, J., & Garcia, D. (2017). Effect of lightcuring exposure time, shade, and thickness on the depth of cure of bulk fill composites. Operative Dentistry, 42(5), 505-513.
Salek, N., Hadizadeh, M., Hosseini, S. A., Daneshkazemi, A. R., & Kouhi, M. (2018). An investigation into the three-point bending properties and the vickers microhardness of dental composites reinforced with nylon 66 nanofibers. Materials Research Express, 5(10), 105401.
Santin, D. C., Velo, M. M. A. C., Camim, F. D. S., Brondino, N. C. M., Honório, H. M., & Mondelli, R. F. L. (2021). Effect of thickness on shrinkage stress and bottom-to-top hardness ratio of conventional and bulk-fill composites. European Journal of Oral Sciences, 129(6), e12825.
Soares, C. J., Bicalho, A. A., Verissimo, C., Soares, P., Tantbirojn, D., & Versluis, A. (2016). Delayed photo-activation effects on mechanical properties of dual cured resin cements and finite element analysis of shrinkage stresses in teeth restored with ceramic inlays. Operative Dentistry, 41(5), 491–500.
Svanberg, M., Mjor, I. A., & Orstavik, D. (1990). Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. Journal of Dental Research, 69(3), 861-864.
Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N. E., & Fong, H. (2007). Bis-GMA/TEGDMA Dental Composites Reinforced with Electrospun Nylon 6 Nanocomposite Nanofibers Containing Highly Aligned Fibrillar Silicate Single Crystals. Polymer, 48(9), 2720-2728.
Van, E. A., De Munck, J., Lise, D. P., & Van Meerbeek, B. (2017). Bulk-Fill Composites: A Review of the Current Literature. The Journal of Adhesive Dentistry, 19(2), 95-109.
Velo, M. M. A. C., Wang, L., Furuse, A. Y., Brianezzi, L. F. F., Scotti, C. K., Zabeu, G. S., Maenosono, R. M., & Mondelli, R. F. L. (2019). Influence of Modulated Photo-Activation on Shrinkage Stress and Degree of Conversion of Bulk-Fill Composites. Brazilian Dental Journal, 30(6), 592-598.
Velo, M. M. A. C., Nascimento, T. R. L., Scotti, C. K., Bombonatti, J. F. S., Furuse, A. Y., Silva, V. D., Simões, T. A., Medeiros, E. S., Blaker, J. J., Silikas, N., & Mondelli, R. F. L. (2019). Improved mechanical performance of self-adhesive resin cement filled with hybrid nanofibers-embedded with niobium pentoxide. Dental Materials, 35(11), e272-e285.
Wang, L., Garcia, F. C. P., Araujo, P. A., Franco, E. B., & Mondelli, R. F. L. (2004). Wear resistance of packable resin composites after simulated toothbrushing test. Journal of Esthetic and Restorative Dentistry, 16(5), 303–314.
Wang, X., Cai, Q., Zhang, X., Wei, Y., Xu, M., Yang, X., Ma, Q., Cheng, Y., & Deng, X. (2016). Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Materials Science and Engineering C, 59, 464-470.
Yancey, E. M., Lien, W., Nuttall, C. S., Brewster, J. A., Roberts, H. W., & Vandewalle, K. S. (2019). Properties of a New Nanofiber Restorative Composite. Operative Dentistry, 44(1), 34-41.
Yancey, E. M., Lien, W., Nuttall, C. S., Brewster, J. A., Roberts, H. W., & Vandewalle, K. S. (2019). Properties of a New Nanofiber Restorative Composite. Operative Dentistry, 44(1), 34-41.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Marilia Mattar de Amoêdo Campos Velo; Natália Almeida Bastos Bitencourt; Daniella Cristo Santin; Alyssa Teixeira Obeid; Rafael Francisco Lia Mondelli; Juliana Fraga Soares Bombonatti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.